5.1 This guide supports the development of material behavior models that can be used to estimate performance of the EBS materials during the post-closure period of a high-level nuclear waste repository for times much longer than can be tested directly. This guide is intended for modeling the degradation behaviors of materials proposed for use in an EBS designed to contain radionuclides over tens of thousands of years and more. There is both national and international recognition of the importance of the use and long-term performance of engineered materials in geologic repository design. Use of the models developed following the approaches described in this guide is intended to address established regulations, such as:
5.1.1 U.S. Public Law 97–425, the Nuclear Waste Policy Act of 1982, provides for the deep geologic disposal of high-level radioactive waste through a system of multiple barriers. These barriers include engineered barriers designed to prevent the migration of radionuclides out of the engineered system, and the geologic host medium that provides an additional transport barrier between the engineered system and biosphere. The regulations of the U.S. Nuclear Regulatory Commission for geologic disposal require a performance confirmation program to provide data through tests and analyses, where practicable, that demonstrate engineered systems and components that are designed or assumed to act as barriers after permanent closure are functioning as intended and anticipated.
5.1.2 IAEA Safety Requirements specify that engineered barriers shall be designed and the host environment shall be selected to provide containment of the radionuclides associated with the wastes.
5.1.3 The Swedish Regulatory Authority has provided general advice to the repository developer that the application of best available technique be followed in connection with disposal, which means that the siting, design, construction, and operation of the repository and appurtenant system components should be carried out so as to prevent, limit, and delay releases from both engineered and geological barriers as far as is reasonably possible.
5.1.4 The Regulatory Authority in Finland identified the need to support the safety assessment stating that the input data and models utilized in the safety case shall be based on high-quality research data and expert judgement. Data and models shall be validated as far as possible and correspond to the conditions likely to prevail at the disposal site during the assessment period.
5.1.5 The Office of Nuclear Regulation in the United Kingdom will regulate an operating geological repository under the Nuclear Installations Act through application of the Safety Assessment Principles developed for all nuclear facilities and the post-closure disposal period will be regulated under the Radioactive Substances Act by the Environmental Agency. A Memorandum of Understanding outlines how the two regulators work together.
5.2 This guide aids in defining acceptable methods for making useful estimations of long-term behavior of materials from such sources as test data, scientific theory, and analogs.
5.3 This guide recognizes that technical information and test data regarding the actual behavior of EBS materials will by necessity be based on test durations that are short relative to the time periods required for geologic disposal (for example, thousands of years and longer). In addition to use in formulating acceptable long-term performance models, data from short-term tests are used to support EBS design and the selection of materials. For example, low confidence in the ability to model the degradation of one material may justify the selection of alternative EBS barrier materials that can be modelled with higher confidence. It is expected that the model will correctly represent material behavior in the intended applications of establishing design criteria, comparison of performance assessment results with safety limits, and so forth. See Section 21 for further discussion on model support and confidence.
5.4 The EBS environment of interest is that defined by the natural conditions (for example, minerals, moisture, biota, and mechanical stresses); changes that occur over time, during repository construction and operation, and as a consequence of radionuclide decay, namely, radiation, radiation-induced damage, heating, and radiolytic effects on the solution chemistry; and changes that may occur over the post-closure period. Environmental conditions associated with disruptive events (for example, mechanical stress from seismic events) and processes (for example, changes in water chemistry) should also be considered.