Saltar navegación principal
Normas ASTM – AENOR
ASTM D7698-19

ASTM D7698-19

Standard Test Method for In-Place Estimation of Density and Water Content of Soil and Aggregate by Correlation with Complex Impedance Method

Fecha:
2020-06-17 /Historical
Superseeded by:
Significance and Use:

5.1 CIMI measurements as described in this Standard Test Method are applicable to measurements of compacted soils intended for roads and foundations.

5.2 The test method is used for estimating in-place values of density and water content of soils and soil-aggregates based on electrical measurements.

5.3 The test method may be used for quality control and acceptance testing of compacted soil and soil aggregate mixtures as used in construction and also for research and development. The minimal disturbance nature of the methodology allows repetitive measurements in a single test location and statistical analysis of the results.

5.4 Limitations: 

5.4.1 This test method provides an overview of the CIMI measurement procedure using a controlling console connected to a soil sensor unit which applies a 3.0 MHz RF voltage to an in-place soil via metallic probes that are driven into the soil at a prescribed distance apart. This test method does not discuss the details of the CIMI electronics, computer, or software that utilize on-board algorithms for estimating the soil density and water content

5.4.2 It is difficult to address an infinite variety of soils in this standard. However, data presented in X3.1 provides a list of soil types that are applicable for the CIMI use.

5.4.3 The procedures used to specify how data are collected, recorded, or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures prescribed in this standard do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.

Note 1: Notwithstanding the statements on precision and bias contained in this test method, the precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable testing depends on many factors; Practice D3740 provides a means of evaluating some of those factors.

5.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.

Scope:

1.1 Purpose and Application—This test method describes the procedure, equipment, and interpretation methods for estimating in-place soil dry density and water content using a Complex-Impedance Measuring Instrument (CIMI).

1.1.1 The purpose and application of this test method is for testing porous material such as used in roadway base or building foundations that may be deployed in the field at various test sites. The test apparatus includes electrodes that contact the porous material under test and a sensor unit that supplies electromagnetic signals to the porous material. Response signals reveal electrical parameters such as complex impedance which can be equated to material properties such as density and moisture content.

1.1.2 CIMI measurements as described in this test method are applicable to measurements of compacted soils intended for roads and foundations.

1.1.3 This test method describes the procedure for estimating in-place density and water content of soils and soil-aggregates by use of a CIMI. The electrical properties of the soil are measured using a radio frequency (RF) voltage source connected to soil electrical probes driven into the soils and soil-aggregates to be tested, in a prescribed pattern and depth. Certain algorithms of these properties are related to wet density and water content. This correlation between electrical measurements, and density and water content is accomplished using a calibration methodology. In the calibration methodology, density and water content are determined by other ASTM Test Standards that measure soil density and water content, thereafter correlating the corresponding measured electrical properties to the soil physical properties.

1.2 Units—The values stated in SI units are to be regarded as standard. The inch-pound units given in parentheses are mathematical conversions which are provided for information purposes only and are not considered standard.

1.2.1 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard.

1.3 Generalized Theory: 

1.3.1 Two key electrical properties of soil are conductivity and relative dielectric permittivity which are manifested as a value of complex-impedance that can be determined.

1.3.2 The soil conductivity contributes primarily to the real component of the complex-impedance, and the soil relative dielectric permittivity contributes primarily to the imaginary component of the complex-impedance.

1.3.3 The complex-impedance of soil can be determined by placing two electrodes in the soil to be tested at a known distance apart and a known depth. The application of a known frequency of alternating current to the electrodes enables a measurement of current through the soil, voltage across the electrodes, and the electrical phase difference between the voltage and current. Complex-impedance is calculated from these known and measured parameters.

1.3.4 From the determined complex-impedance, an electrical network consisting of a resistor (R) and capacitor (C) connected in parallel are used to represent a model of the soil being tested.

1.3.5 Relationships can be made between the soil wet density and the magnitude of the complex-impedance, and also between the soil water mass per unit measured, and the quotient of the values of C and R using a Soil Model process.

1.3.6 The Soil Model process results in mathematical relationships between the physical and electrical characteristics of the soil which are used for soil-specific calibration of the CIMI.

1.3.7 Refer to Appendix X1 for a more detailed explanation of complex-impedance measurement of in-place soil, and its use in field measurements for the estimation of dry density and water content.

1.4 Precautions: 

1.4.1 The low-level RF output power levels of the CIMI method are harmless.

1.4.2 The SI units presented for apparatus are substitutions of the inch-pound units, other similar SI units should be acceptable providing they meet the technical requirements established by the inch-pound apparatus.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Keywords:
capacitor; compaction; complex-impedance; current; dielectric permittivity; dry density; impedance magnitude; percent compaction; phase; resistor; water content; water mass per unit volume; wet density;
56,44
Idioma Formato

Formato físico y digital

Nota: Precios sin IVA ni gastos de envío

Añadir a la cesta