(a) Earthquakes—Local earthquakes seldom are a problem during gravity observations. They occur and are gone before they are any inconvenience. Distant earthquakes however, can lead to gravity changes of 100 μGals or more with periods of tens of minutes or more. These effects can delay gravity observations for several hours or even days.
(b) Microseisms—Microseisms are defined as feeble earth tremors due to natural causes such as wind, water, or waves (Sheriff (1)). They are believed to be related to wave action on shorelines and to the passage of rapidly moving pressure fronts whose effects are seen as sinusoidal variations in the gravity data. Their amplitude can readily exceed several tens of μGals.
(c) Earth Tides—Solar and lunar tides affect the force of gravity at the Earth's surface by as much as 300 μGals with a rate of change as large as 1 μGal/min. These solid earth tides are predictable and can be corrected for as a part of gravity data correction procedures.
(d) Wind and Rain—Wind and heavy rain can cause movement of the gravimeter. The gravimeter should be shielded from the wind and rain.
(e) Extreme Temperatures—Extreme temperature changes over short periods of time can cause instrument drift. In order to minimize this effect, the gravimeter should be insulated from extreme heating or cooling. Slow gradual changes in temperature are normally accommodated by repeat base station measurements and drift corrections made as a normal part of the gravity survey.
(f) Geologic Sources of Noise—Geologic sources of noise may include unknown variations in the natural spatial distribution of soil and rock and their densities.
(g) Topography—Hills, mountains, and valleys affect gravity measurements. Depending on the objectives of the survey, topographic corrections may be needed (Hinze (8)).
(h) Cultural Sources of Noise—Cultural sources of noise include vibration from vehicles, heavy equipment, trains, and even persons walking near the gravimeter.