5.1 This test method is useful for estimating the strain at the onset of necking in a uniaxial tension test (1). Practically, it provides an empirical parameter for appraising the relative stretch formability of similar metallic systems. The strain-hardening exponent is also a measure of the increase in strength of a material due to plastic deformation.
5.2 The strain-hardening exponent may be determined over the entire plastic stress-strain curve or any portion(s) of the stress-strain curve specified in a product specification.
Note 4: The engineering strain interval 10–20% is commonly used for determining the strain-hardening exponent, n, of formable low-carbon steel products
5.3 This test method is not intended to apply to any portion of the true -stress versus true -strain curve that exhibits discontinuous behavior; however, the method may be applied by curve-smoothing techniques as agreed upon.
Note 5: For example, those portions of the stress-strain curves for mild steel, aluminum, or other alloys that exhibit yield point and Lüders band elongation, twinning, or Portevin–Le Chatelier effect (PLC) may be characterized as behaving discontinuously.
Note 6: Caution should be observed in the use of curve-smoothing techniques as they may affect the n-value.