Saltar navegación principal
ASTM E690-10

ASTM E690-10

Standard Practice for In Situ Electromagnetic (Eddy-Current) Examination of Nonmagnetic Heat Exchanger Tubes

2015-06-15 /Historical
Superseeded by:
Significance and Use:

Eddy-current examination is a nondestructive method of locating discontinuities in tubing made of materials that conduct electricity. Signals can be produced by discontinuities located either on the inner or outer surfaces of the tube, or by discontinuities totally contained within the tube wall. When using an internal probe, the density of eddy currents in the tube wall decreases very rapidly as the distance from the internal surface increases; thus the amplitude of the response to outer surface discontinuities decreases correspondingly.

Some indications obtained by this method may not be relevant to product quality. For example, an irrelevant signal may be caused by metallurgical or mechanical variations that are generated during manufacture but that are not detrimental to the end use of the product. Irrelevant indications can mask unacceptable discontinuities occurring in the same area. Relevant indications are those that result from nonacceptable discontinuities. Any indication above the reject level, which is believed to be irrelevant, shall be regarded as unacceptable until it is proven to be irrelevant. For tubing installed in heat exchangers, predictable sources of irrelevant indications are lands (short unfinned sections in finned tubing), dents, scratches, tool chatter marks, or variations in cold work. Rolling tubes into the supports may also cause irrelevant indications, as may the tube supports themselves. Eddy-current examination systems are generally not able to separate the indication generated by the end of the tube from indications of discontinuities adjacent to the ends of the tube (end effect). Therefore, this examination may not be valid at the boundaries of the tube sheets.


1.1 This practice describes procedures to be followed during eddy-current examination (using an internal, probe-type, coil assembly) of nonmagnetic tubing that has been installed in a heat exchanger. The procedure recognizes both the unique problems of implementing an eddy-current examination of installed tubing, and the indigenous forms of tube-wall deterioration which may occur during this type of service. The document primarily addresses scheduled maintenance inspection of heat exchangers, but can also be used by manufacturers of heat exchangers, either to examine the condition of the tubes after installation, or to establish baseline data for evaluating subsequent performance of the product after exposure to various environmental conditions. The ultimate purpose is the detection and evaluation of particular types of tube integrity degradation which could result in in-service tube failures.

1.2 This practice does not establish acceptance criteria; they must be specified by the using parties.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

eddy-current; electromagnetic; NDT; nondestructive testing; Condenser and heat exchanger systems; Curie temperature; Eddy current examination; Electromagnetic (eddy current) testing; Nonmagnetic heat exchanger tubes
Idioma Formato

Formato físico y digital

Nota: Precios sin IVA ni gastos de envío

Añadir a la cesta