Saltar navegación principal
ASTM D6080-97(2002)

ASTM D6080-97(2002)

Standard Practice for Defining the Viscosity Characteristics of Hydraulic Fluids

2017-08-16 /Historical
Superseeded by:
Significance and Use:

The purpose of this practice is to establish viscosity designations derived from viscosities measured by test methods which have a meaningful relationship to hydraulic fluid performance. This permits lubricant suppliers, lubricant users, and equipment designers to have a uniform and common basis for designating, specifying, or selecting the viscosity characteristics of hydraulic fluids.

This practice is not intended to be a replacement for Classification D 2422. Rather, it is an enhancement intended to provide a better description of the viscosity characteristics of lubricants used as hydraulic fluids.

This practice implies no evaluation of hydraulic oil quality other than its viscosity and shear stability under the conditions specified.

While it is not intended for other functional fluids, this practice may be useful in high-shear-stress applications where viscosity index (VI) improvers are used to extend the useful operating temperature range of the fluid.

This practice does not apply to other lubricants for which viscosity classification systems already exist, for example, SAE J300 for automotive engine oils and SAE J306 for axle and manual transmission lubricants.


1.1 This practice is applicable to all hydraulic fluids based either on petroleum, synthetic, or naturally-occurring base stocks. It is not intended for water-containing hydraulic fluids.

1.2 For determination of viscosities at low temperature, this practice uses millipascalsecond (mPa·s) as the unit of viscosity. For reference, 1 mPa·s is equivalent to 1 centipoise (cP). For determination of viscosities at high temperature, this practice uses millimetre squared per second (mm2/s) as the unit of kinematic viscosity. For reference, 1 mm2/s is equivalent to 1 centistoke (cSt).

1.3 This practice is applicable to fluids ranging in kinematic viscosity from about 4 to 150 mm2/s as measured at a reference temperature of 40°C and to temperatures from -50 to +16°C for a fluid viscosity of 750 mPa·s.

Note 1—Fluids of lesser or greater viscosity than the range described in are seldom used as hydraulic fluids. Any mathematical extrapolation of the system to either higher or lower viscosity grades may not be appropriate. Any need to expand the system should be evaluated on its own merit.

Brookfield viscosity; hydraulic fluid; shear stability; viscosity; viscosity classification
Idioma Formato

Formato físico y digital

Nota: Precios sin IVA ni gastos de envío

Añadir a la cesta