

AENOR

Environmental product declaration

EN ISO 14025:2010 EN 50693:2019

Cable Family N1VV-K Unipolar

 2025-10-28
 2025-10-28

 2030-10-27
 2030-10-27

The declared validity is subject to registration and publication on www.aenor.com

Registration code: GlobalEPD EN 50693 - 042

Bruno Baldassari & F.IIi S.p.A.

The holder of this Declaration is responsible for its contents and for keeping the records and the documentation that supports data and statements included during the validity period.

Holder of the Declaration

BRUNO BALADASSARI & F,LLI S.P.A. Viale Europa 118-120 55013 Lammari (LU), Italy

Tel. (+39) 0583 43521

Mail <u>export@baldassari.it</u>

Web <u>www.baldassaricavi.it</u>

Life cycle assessmant

LIFE CYCLE ENGINEERING S.P.A.. Via Livorno 60 – Enviromental Park, 10144 Torino, Italy

(+39) XXX

Tel.

Mail <u>info@lcengineering.eu</u>
Web <u>www.lcengineering.eu.it</u>

AENOR

Program operator GlobalEPD

AENOR CONFIA, S.A.U C/ Génova 6 28004 – Madrid, Spain

Tel. (+34) mail aenoro web www.a

(+34) 902 102 201 aenordap@aenor.com www.aenor.com

AENOR is a founding member of ECO Platform, the European Association of Environmental Product Declaration Verification Programs

The European standard EN 5069	3:2019 serves as PCR for this EPD							
Independent verification of the declaration and data in accordance with EN ISO 14025:2010								
□Internal	⊠External							
Verification body								

AENOR

1. General Information

1.1. The organization

Baldassari Cavi, founded in 1963, is one of the leading manufacturers of low voltage electrical cables, confirming the path taken of constant growth over the years in terms of turnover and production range.

Baldassari Cavi products represent the qualitative excellence achieved through years of research and experimentation, starting from raw materials selected and transformed with the most modern production processes to create cables that exceed all the requirements of the regulations. The quality of the products, which has always been a priority of the company, is recognized nationally and internationally and is confirmed by the numerous approvals obtained over the years.

Baldassari Cavi produces a wide range of cables that can be used for all types of use and works with the most important certification bodies in the cable market such as IMQ, AENOR, LCIE, VDE, CEBEC and others.

The company has been ISO 9001 certified since 1996 and ISO 14001 since 2014.

1.2. Scope of the declaration

This declaration describes N1VV-K Unipolar cable family, manufactured in the paints of the Bruno Baldassari & F.lli company, located in:

- Marlia (Lucca, Italy) for the copper conductor
- Lammari (Lucca, Italy) for the insulation
- · Salanetti (Lucca, Italy) for the packaging.

This declaration refers to the year 2023.

Reference rules for product selection

- In the absence of sales data for the inventory reference year, data from years with available sales are used (2024 and 2025).
- Where it is not possible to identify the best-selling product, the selection is based on the best-selling section of the formation with the closest technical and dimensional characteristics.
- If the largest or smallest product has never been sold, quantities are estimated by assuming 1 km of product as the functional unit, with the corresponding weight expressed in tonnes.

This approach ensures a balance between representativeness, accuracy, and practicality of analysis, in accordance with the principles of standard EN 50693 and the guidelines of the GlobalEPD program by AENOR.

For each selected subfamily, the LCA assessment was conducted on the configurations with the smallest, best-selling, and largest cross-sections.

Therefore, to describe the cable family, the data of the following cables are reported:

Subfamily with one conductor (1x):

- N1VV-K 1x35, the cable with the smallest cross-section;
- N1VV-K 1x240, the representative cable of the subfamily;
- N1VV-K 1x630, The cable with the largest section;

1.3. Lifecycle and compliance.

This EPD has been developed and verified in accordance with EN ISO 14025:2010 and EN 50693:2019 standards and the following Category Rule:

ABOUT (CATEGORY RULES PRODUCT
Title	Product category rules for life cycle assessments of electronic and electrical products and systems
Registratio n code and version	EN 50693:2019.
Issue Date	March 2020
Complianc e	EN 50693:2019
Program Operator	AENOR

This Environmental Statement covers the following life cycle phases:

System limitations. Modules considered

	System minitations. Modules considered							
_	Raw materials	Х						
Manufacturing	Raw materials transport	Х						
	Manufacturing	Х						
Distribution	Distribution	Х						
Installation	Installation, process and waste	Х						
Hee	Use	Х						
Use -	Maintenance	NA						
_	Deinstallation	NA						
End of life	Transport	X						
stage	Waste treatment	Х						
	Waste disposal	Х						
	Benefits and loads beyond the life cycle	х						

*NA: Not Aplicable

This EPD may not be comparable with those developed in other programs or according to different reference documents, in particular it may not be comparable with EPDs not drafted in accordance with the EN 50693:2019.

Similarly, this EPD may not be comparable if the source of the data is different (e.g. databases), if not all relevant modules are included, or if they are not based on the same scenarios.

The comparison of construction products must be carried out on the same function, applying the same functional unit and at the level of the building (or the architectural work or engineering), i.e. including the behavior of the product throughout its life cycle, as well as the specifications of section 6.7.2 of the EN ISO 14025 standard.

2.The product

2.1 Product Identification

The N1VV-K family of cables consists of power cables PVC insulated with PVC sheath, not propagating fire with reduced corrosive gas emission, with special fire reaction characteristics according to Construction Products Regulation (CPR).

The CPC code is 4634.

The applicable regulations are:

- Construction Products Regulation: EU Reg. 305/11.
- Class in accordance with EN 50575:2014
 + A1:2016 and EN 13501-6:2014: Eca
- Build and requirements: XP C 32-321:2014
- Flame spread: NF EN 60332-1-2
- Low Voltage Directive: 2014/35/EU

Formazione	Ø indicativo conduttore	Spessore medio isolante	Spessore medio guaina	Ø esterno max	Resistenza elettrica max a 20°C	Peso indicativo cavo				li corrente A		
n° x mm²	mm	mm	mm	mm	Ω/km	kg/km	in aria	in tubo in aria	interrat	o a 20°C		terrato a 0°C
							a 30°C	a 30°C	K = 1	K = 1,5	K = 1	K = 1,5
1 x 1,5	1,5	0,7	1,4	8,2	13,3	55	24	20	26	24	23	21
1 x 2,5	2,0	0,7	1,4	8,7	7,98	69	33	28	34	31	29	27
1 x 4	2,5	0,7	1,4	9,3	4,95	84	45	37	43	40	38	35
1 x 6	3,0	0,7	1,4	9,9	3,30	115	58	48	55	51	48	44
1 x 10	4,0	0,7	1,4	10,9	1,91	155	80	66	73	68	64	59
1 x 16	5,0	0,7	1,4	11,4	1,21	225	107	88	96	89	83	77
1 x 25	6,2	0,9	1,4	13,2	0,780	320	141	117	124	115	108	100
1 x 35	7,4	0,9	1,4	14,6	0,554	420	176	144	150	139	131	121
1 x 50	8,9	1,0	1,4	16,4	0,386	585	216	175	186	173	162	150
1 x 70	10,5	1,1	1,4	18,3	0,272	790	279	222	229	212	199	184
1 x 95	12,2	1,1	1,5	20,4	0,206	990	342	269	270	250	234	217
1 x 120	13,8	1,2	1,5	22,4	0,161	1020	400	312	312	289	271	251
1 x 150	15,4	1,4	1,6	24,8	0,129	1550	464	355	356	330	310	287
1 x 185	16,9	1,7	1,7	27,2	0,106	1870	533	417	401	371	349	323
1 x 240	19,5	1,8	1,8	30,4	0,0801	2400	634	490	471	436	409	379
1 x 300	23,0	1,8	1,8	33,0	0,0641	2955	736	-	533	493	463	429
1 x 400	26,5	2,0	2,0	37,7	0,0486	3835	868	-	621	575	540	500
1 x 500 (*)	28,5	2,2	2,1	45,0	0,0384	4785	998	-	689	650	599	565
1 x 630 (*)	32,8	2,4	2,3	51,1	0,0287	6465	1151	-	785	741	683	645

2.2 Product Performance

The environmental performance of the cable are shown for 1 km of cable for each module (upstream, core, downstream) and for each stage (Manufacturing, Distribution, Installation, Use and End-oflife) of the life cycle.

The environmental impact indicators are quantified using the characterisation factors and impact assessment methods specified in EN 50693:2019 (Table B.1, Annex B).

The manufacturer declares the following information on the technical specifications of the product:

Product Performance

Cable	1x35	1x240	1x630
Electrical resistance 20°C (ohm/km)	0,554	0,0801	0,0287
Useful life (a)	30	30	30
Utilization Percentage	70%	70%	70%
Actual use life (a)	21	21	21

2.3 Product composition

The composition declared by the manufacturer is as follows:

Product composition

Cable	1x35	1x240	1x630					
Copper	69,1%	79,6%	81,9%					
PE	0%	0%	0%					
PVC	30,9%	20,4%	18,1%					
Cable weight (kg/km)	403,69	2463,89	6707,15					

3. LCA information

3.1 Life cycle analysis

This environmental statement aims to analyze the environmental impact of N1VV-K Unipolar Range® cables.

The life cycle analysis of the cable family was carried out using a special software developed for Bruno Baldassari S.p.A. by the consulting firm LCE, based on the EN ISO 14040:2006/A1:2020 standard, and the EN 50693:2019.

The software is called "Baldassari WebTool". The version used is the (1.3.1) and it's based on the processes of Ecoinvent 3.10. This software has been verified by AENOR.

This EPD has been developed according to the GlobalEPD program.

3.2 Declared unit

The functional unit used for energy wires and cables is defined as follow:

"To transmit energy expressed for 1A over a distance of 1 km during 30 years and a 70% use rate in accordance with the relevant standard"

Therefore, this report has been drawn up considering the following parameters for functional unit definition:

- 1km for manufacturing, distribution, and end of life stages,
- 1km and 1 A for the usage stage, as suggested by the norm.

For all the aggregate data has been considered as allocation rule the percentage of production of the specific cable compared to the total production of the company

3.3 Reference Useful Life (RSL)

The useful life of the product has been considered in accordance with the reference as defined in the table given in Appendix 1 of the specific rules for wire cables and accessories (PSR0001-ed.4-EN-2022 11 16), considering that the company produces building cable for residential, tertiary and industrial use (except LAN), therefore a useful life of 30 years with a use of 70% (therefore 21 effective years).

3.4 Allocation criteria

Some parameters have been assigned in proportion to the tons of cable produced compared to the total tons produced.

These parameters are:

- The auxiliary materials used in the production
- Emissions from the manufacturing process
- Internal transport
- The waste produced
- Production waste
- The shipping packaging of the cables.
- Water consumption

3.5 Representativeness, quality and selection of data

For the development of this study, we have taken into account the data quality requirements established by the standards:

- EN 50693:2019
- EN ISO 14040:2006/A1:2020;
- EN ISO 14044:2006/A2:2020;

Global EPD (managed by Aenor) with reference to PCR of PEP Ecopassport: PCR, PSR wire and cables. The software used for LCA calculations is the "Baldassari Webtool" as describes in 3.1.

Primary inventory data was collected through questionnaires filled out and entered into the tool. The entire product covered by this EPD was manufactured in Italy and distributed in Italy.

The Ecoinvent database 3.10 was used for secondary data.

3.6 Quality data evaluation

Data quality can be classified as follows:

- Primary data: quantified value of a process or an activity obtained from a direct measurement, or a calculation based on direct measurements.
- Site-specific data: primary data obtained within the product system.
- Secondary data: data which do not fulfil the requirements for primary data. They can include data from databases and published literature, default emission factors from national inventories, calculated data, estimates or other representative data, validated by competent authorities.

The aspects of accuracy, completeness, representativeness (temporal, geographical, and technological scope) and consistency have been addressed in the data quality analysis.

Background database to model each involved material and energy flow and other data is Ecoinvent 3.10, implemented in SimaPro 9.6.0.1 software. The evaluation of the used process is reported in LCA report.

Further details on data quality are specified in the following paragraphs, per each phase considered.

3.7 Cut-off criteria

Cut-off criteria are used to exclude from the analysis critical aspects which impact is expected to be low or negligible and which primary data are rather hard to collect. In this study the following flows have been included in the cut-off:

- Packaging of raw materials as they are delivered to the manufacturer.
- Temporary packaging for internal transport.
- Wastewater from core processes.
- Considering the wide range of possible installation of the products, as suggested by reference PCR, installation processes are excluded from the system boundaries. Yet, the packaging treatment of the product is considered as a waste flow in this phase.
- Maintenance, Repair, Replacement and Refurbishment are not part of the life cycle of these products. Their contribution to cable life cycle impacts is considered negligible according to technology review provided by cable manufacturers.
- Considering the wide range of possible removal process of these products, the removal process and/or dismantling of cables are excluded from the perimeter.

3.8 Other calculation Criteria and hypotheses

The main assumptions made during the study are detailed below.

- For Ecoinvent processes, the "Cut-off" criterion applies.
- The analysis refers to the complementary national electricity mix, based on the average composition of energy sources used for electricity generation in the country (e.g., share of renewable energy, natural gas, etc.).
- For the consumption and energy mix data related to the cable manufacturing process, the complementary national electricity mix was used. The company has a self-generated energy only for self-consumption. The impact of the energy is:

0,7843 kgCO2/Kwh

 For the end-of-life scenario of the waste generated at different stages of the life cycle, recycling landfill and incineration percentages have been applied, In the use phase, it was held that energy dissipated on the basis of electrical resistance and service life of each Cable according to the following formula:

$$E[J.km-1] = R[\Omega.km-1] \times I2 [A2] \times \Delta t [s]$$

Consumption is expressed in J*km-1, considering that the functional unit is given for 1A and 1km of cable. Electrical resistance is a characteristic of the cable, described in the data sheets. A service life of 30 years is taken into account, and usage ratio of 70%, as indicated on by the SPECIFIC RULES FOR Wires, Cables and Appendix 1 of PEP ecopassport® – PSR.

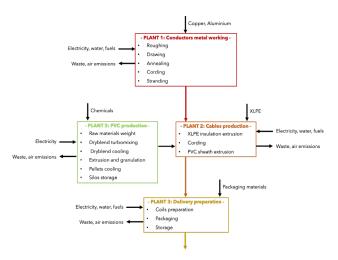
Energy consumption

Cable	1x35	1x240	1x630
Electrical resistance 20°C (ohm/km)	0,554	0,0801	0,0287
Useful life (a)	30	30	30
Utilization Percentage	70%	70%	70%
Actual use life (a)	21	21	21
Energy consumption during the use stage expressed in J.km-1	3,7x10^8	5,3x10^7	1,9x10^7

4. System boundaries, Scenarios and Additional Technical info

4.1 Manufactoring

Raw Materials:


All raw materials used in the production of all cable components were considered. **The total recycled copper content amounts to 12.7%.** The cables in question are manufactured in the factories of Bruno Baldassari & F.Ili S.p.A. located in Capannori, in the province of Lucca, Italy.

Raw material transport

The transport of raw materials was calculated on the basis of the distance between the suppliers and the Bruno Baldassari & F.lli S.p.A. plant. Transport was modelled using Ecoinvent datasets for lorries Euro 3–6, according to the vehicle distribution reported by ACI (2023).

Manufactoring

This module includes all the production that takes place within the Bruno Baldassari & F.lli S.p.A. plants, including the use of auxiliary materials, water, natural gas, production waste, which have been considered in proportion to the production of the cables considered. The scheme below shows the main steps inside each plant, where plants 1 is Marlia, plants 2 is Lammari and plants 3 is Salanetti.

4.2 Distribution

Transport by truck to the cable's reference country, in this case Italy, was considered. We considered an average distance of 400km

4.3 Installation

The installation of the cables was not considered due to the possible different method, but the packaging waste are considered in this phase.

4.4 Use

For the use phase, the energy consumption during the use of the cable that is based on the dissipated energy calculated on the basis of the electrical resistance and the useful life of the product, as specified in point 3.3, with the energy mix of the reference country, in this case Italy.

4.5 End of life stage

The product is highly disassemblable at the end of its life cycle.

After shredding, metallic and plastic components can be mechanically separated. The end of life of the product has been established as follows following the % suggested by the PEP for recovery, recycling, incineration and landfill.

- Everything that is identified as SHEATH:
 50% energy recovery, 50% in landfill.
- Everything that is identified as METAL: 60% recycling, 40% landfill (conservative hypothesis of copper, aluminium associated with this hypothesis for simplicity).

In addition, the entire cable is associated with a 50km transport by road with light vehicle and a manual disassembly process.

All the stages in the module are added in a unique result in chapter 5.

4.6 Benefits and burdens beyond the system

This considers the advantages of recycling beyond the boundaries of the system, representing the amount of virgin raw material replaced by recycled raw material, and therefore with a positive impact, but outside the limits of the system. To logically evaluate this module, the criteria of the EN 50693 standard are followed, applying the recyclability values recommended by the European Commission. In addition, it is considered a parameter that identifies the quality of the waste leaving as recyclable material on the market.

5. LCA and Environmental Parameters Declaration

Environmental impacts

N1VV-K 1X35

Estimated impact results are relative and do not indicate the final value of impact categories, nor do they refer to threshold values, safety margins or risks

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
GWP-Total	kg CO2 eq	3.519,41	32,25	0,38	36,44	210,44	-1.016,72
GWP-fossil	kg CO2 eq	3.494,35	32,24	0,28	36,28	210,32	-1.013,60
GWP-biogenic	kg CO2 eq	20,13	1,09E-03	0,10	0,16	0,04	-1,14
GWP-luluc	kg CO2 eq	4,93	7,87E-04	1,15E-05	2,29E-03	0,07	-1,98
ODP	kg CFC11 eq	8,61E-05	6,53E-07	2,87E-09	7,59E-07	5,51E-07	-9,96E-06
AP	Equalizer of mole H+	261,60	0,11	6,89E-04	0,12	0,32	-13,10
EP-water sweet	kg P eq	0,82	2,68E-05	4,47E-07	6,18E-04	2,54E-03	-0,14
EP-marine	kg N eq	10,10	0,05	3,59E-04	0,02	0,08	-2,07
EP-terrestrial	Mole N eq	144,90	0,51	3,28E-03	0,21	0,83	-28,48
POCP	Kg NMVOC eq	45,08	0,18	1,08E-03	0,10	0,25	-6,83
ADP-Minerals and metals ²	kg Sb eq	3,65	1,06E-06	1,54E-08	5,28E-07	3,75E-06	-0,65
ADP-fossil ²	MJ	48.263,55	422,92	1,93	598,66	831,19	-12.205,50
WDP ²	m3	4.287,79	0,18	-0,21	26,77	12,66	-591,50

GWP - total: global warming potential; **GWP - fossil**: Global warming potential of fossil fuels; **GWP - biogenic**: Biogenic global warming potential; **GWP - luluc**: Global warming potential of land use and land use change; **ODP**: Stratospheric Ozone Depletion Potential; **AP:** Acidification potential, accumulated surplus; **EP-freshwater**: Eutrophication potential, fraction of nutrients that reach the final freshwater compartment; **EP-marine**: Eutrophication potential, fraction of nutrients reaching the final seawater compartment; **EP-terrestrial**: eutrophication potential, accumulated surplus; **POCP:** Ground-level ozone formation potential; **ADP-minerals and metalsPotential for depletion of abiotic resources for non-fossil resources; APD-fossil**: potential for depletion of abiotic resources for fossil resources; **WDP**: Water deprivation potential (user), weighted deprivation consumption for water. **NR:** Not relevant

Additional environmental impacts

N1VV-K 1X35

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
PM	Incidence of diseases	5,17E-04	2,70E-06	1,05E-08	4,66E-07	2,96E-06	-9,20E-05
IRP ¹	kBq U235 eq	185,14	0,06	3,45E-04	1,25	2,77	-32,23
ETP-fw ²	CTUe	226.311,62	16,30	1,75	27,84	397,24	-31.433,20
HTP-c ²	CTUh	3,71E-05	2,48E-09	9,75E-11	9,08E-09	2,85E-08	-1,85E-06
HTP-nc ²	CTUh	3,06E-03	2,67E-07	3,75E-09	9,27E-08	7,30E-07	1,25E-05
SQP ²	-	76.340,97	0,95	0,76	78,04	100,02	-12.961,81

PM: Potential incidence of diseases due to emissions of particulate matter (PM); IRP: Human potential exposure efficiency relative to U235; ETP-fw: Comparative potential of toxic unit for ecosystems - freshwater; HTP-c: Comparative potential of toxic unit for ecosystems - carcinogenic effects; HTP-nc: Comparative potential of toxic unit for ecosystems non-carcinogenic effects; SQP: Soil quality potential index; NR: Not relevant

Notice 1: This impact category deals mainly with the eventual impacts of low doses of ionizing radiation on human health, of the nuclear fuel cycle. It does not consider the effects due to possible nuclear accidents or occupational exposure due to the disposal of radioactive waste in underground facilities. The potential for ionizing radiation of the soil, due to radon or some building materials is not measured with this parameter either.

Notice 2: The results of this environmental impact indicator should be used with caution, as the uncertainties of the results are high and experience with this parameter is limited

Resource Utilization

N1VV-K 1X35

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage /8,92	Benefits
PERE	MJ	10.061,91	1,47	0,01	207,45	78,92	-2.998,73
PERM	MJ	55,12	0,00	0,00	0,00	0,00	0,00
PERT	MJ	10.117,03	1,47	0,01	207,45	78,92	-2.998,73
PENRE	MJ	46.562,23	422,92	1,93	598,66	831,19	-12.205,50
PENRM	MJ	1.701,32	0,00	0,00	0,00	0,00	0,00
PENRT	MJ	48.263,55	422,92	1,93	598,66	831,19	-12.205,50
SM	Kg	0,17	0,00	0,00	0,00	0,00	61,56
RSF (RSF)	MJ	0,11	0,00	0,00	0,00	0,00	0,00
NRSF	MJ	0,00	0,00	0,00	0,00	0,00	0,00
FW	m3	103,67	0,01	-4,66E-03	0,70	0,48	-24,71

PERE: Use of renewable primary energy, excluding renewable primary energy resources used as feedstocks; PERM: Use of renewable primary energy used as a feedstock; PENRE: Use of non-renewable primary energy, excluding non-renewable primary energy resources used as feedstocks; PENRM: Use of non-renewable primary energy used as a feedstock; PENRT: Total use of non-renewable primary energy; SM: Use of secondary materials; RSF: Use of renewable secondary fuels; NRSF: use of non-renewable secondary fuels; FW: Net use of piped water resources; NR: Not relevant

Waste Categories

N1VV-K 1X35

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
HWD	Kg	0,04	0,00	0,00	0,00	0,00	-0,23
NHWD	Kg	1,07	0,00	0,02	0,00	175,52	-55,93
RWD	Kg	3,84E-07	0,00	0,00	0,00	0,00	0,00

HWD: Hazardous waste disposed of; NHWD: Non-hazardous waste disposed of; RWD: Radioactive waste disposed of; NR: Not relevant

Output flows

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
CRU	Kg	0,06	0,00	0,00	0,00	0,00	0,00
MFR	Kg	3,11	0,00	0,12	0,00	169,68	1,49
MER	Kg	0,24	0,00	0,00	0,00	62,40	0,00
USA	MJ	0,00	0,00	0,00	0,00	0,00	0,00

CRU: Components for reuse; MFRs: Recycling Materials; MER: Materials for energy recovery; EE: Exported energy; NR: Not relevant

Biogenic Carbon Content Information

Biogenic carbon content	Unit	Profit per reported functional unit
Biogenic carbon content product - KgC	Kg C	
Biogenic carbon content packaging- KgC	Kg C	1,23

Environmental impacts

N1VV-K 1X240

The estimated impact results are relative and do not indicate the final value of the impact categories, nor do they refer to threshold values, safety margins or risks

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
GWP-total	kg CO2 eq	23.350,47	78,82	0,38	5,27	974,17	-6.910,29
GWP-fossil	kg CO2 eq	23.178,09	78,82	0,28	5,25	973,50	-6.888,93
-biogenic	kg CO2 eq	138,76	2,67E-03	0,10	0,02	0,24	-7,81
GWP-luluc	kg CO2 eq	33,63	1,92E-03	1,15E-05	3,30E-04	0,43	-13,55
ODP	kg CFC11 eq	4,42E-04	1,60E-06	2,87E-09	1,10E-07	3,23E- 06	-6,47E-05
AP	Mole Equalizer H+	1.808,45	0,27	6,89E-04	0,02	1,86	-90,49
EP-fresh water	kg P eq	5,67	6,56E-05	4,47E-07	8,93E-05	0,02	-0,95
EP-marine	kg N eq	69,24	0,11	3,59E-04	2,64E-03	0,43	-14,27
EP-terrestrial	Mole N eq	995,86	1,24	3,28E-03	0,03	4,69	-196,81
POCP	Kg NMVOC eq	309,32	0,44	1,08E-03	0,01	1,41	-47,10
ADP-Minerals and metals ²	kg Sb eq	25,28	2,59E-06	1,54E-08	7,63E-08	1,86E- 05	-4,50
ADP-fossil ²	MJ	313.467,12	1.033,78	1,93	86,56	4.971,62	-82.053,03
WDP ²	m3	29.379,24	0,44	-0,21	3,87	67,15	-4.085,54

GWP - total: global warming potential; **GWP - fossil**: Global warming potential of fossil fuels; **GWP - biogenic**: Biogenic global warming potential; **GWP - luluc**: Global warming potential of land use and land use change; **ODP**: Stratospheric Ozone Depletion Potential; **AP:** Acidification potential, accumulated surplus; **EP-freshwater**: Eutrophication potential, fraction of nutrients that reach the final freshwater compartment; **EP-marine**: Eutrophication potential, accumulated surplus; **POCP**: Ground-level ozone formation potential; **ADP-minerals and metalsPotential for depletion of abiotic resources for non-fossil resources; APD-fossil**: potential for depletion of abiotic resources for fossil resources; **WDP**: Water deprivation potential (user), weighted deprivation consumption for water. **NR:** Not relevant

Additional environmental impacts

N1VV-K 1X240

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
PM	Incidence of diseases	3,54E-03	6,61E-06	1,05E-08	6,74E-08	1,76E-05	-6,37E-04
IRP ¹	kBq U235 eq	1.229,17	0,14	3,45E-04	0,18	16,73	-212,83
ETP-fw ²	CTUe	1.560.297,66	39,84	1,75	4,03	1.814,94	-217.683,13
HTP-c ²	CTUh	2,56E-04	6,05E-09	9,75E-11	1,31E-09	1,38E-07	-1,28E-05
HTP-nc ²	CTUh	0,02	6,52E-07	3,75E-09	1,34E-08	3,53E-06	8,71E-05
SQP ²	-	522.493,83	2,31	0,76	11,28	593,02	-89.642,11

PM: Potential incidence of diseases due to emissions of particulate matter (PM); IRP: Human potential exposure efficiency relative to U235; ETP-fw: Comparative potential of toxic unit for ecosystems - freshwater; HTP-c: Comparative potential of toxic unit for ecosystems - carcinogenic effects; HTP-nc: Comparative potential of toxic unit for ecosystems non-carcinogenic effects; SQP: Soil quality potential index; NR: Not relevant

Notice 1: This impact category deals mainly with the eventual impacts of low doses of ionizing radiation on human health, of the nuclear fuel cycle. It does not consider the effects due to possible nuclear accidents or occupational exposure due to the disposal of radioactive waste in underground facilities. The potential for ionizing radiation of the soil, due to radon or some building materials is not measured with this parameter either.

Notice 2: The results of this environmental impact indicator should be used with caution, as the uncertainties of the results are high and experience with this parameter is limited

Resource Utilization

N1VV-K 1X240

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
PERE	MJ	69.016,38	3,59	0,01	29,99	475,20	-20.507,06
PERM	MJ	55,12	0,00	0,00	0,00	0,00	0,00
PERT	MJ	69.071,50	3,59	0,01	29,99	475,20	-20.507,06
PENRE	MJ	306.531,62	1.033,80	1,93	86,56	4.971,62	-82.053,03
PENRM	MJ	6.935,50	0,00	0,00	0,00	0,00	0,00
PENRT	MJ	313.467,12	1.033,80	1,93	86,56	4.971,62	-82.053,03
SM	Kg	0,17	0,00	0,00	0,00	0,00	426,56
RSF (RSF)	MJ	0,11	0,00	0,00	0,00	0,00	0,00
NRSF	MJ	0,00	0,00	0,00	0,00	0,00	0,00
FW	m3	710,26	0,03	-4,66E-03	0,10	2,58	-170,23

PERE: Use of renewable primary energy, excluding renewable primary energy resources used as feedstocks; PERM: Use of renewable primary energy used as a feedstock; PERM: Use of non-renewable primary energy, excluding non-renewable primary energy resources used as feedstocks; PENRM: Use of non-renewable primary energy used as a feedstock; PENRT: Total use of non-renewable primary energy; SM: Use of secondary materials; RSF: Use of renewable secondary fuels; NRSF: use of non-renewable secondary fuels; FW: Net use of piped water resources; NR: Not relevant

Waste Categories

N1VV-K 1X240

Parametro	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
HWD	Kg	0,04	0,00	0,00	0,00	0,00	-1,57
NHWD	Kg	1,13	0,00	0,02	0,00	1.035,61	-387,51
RWD	Kg	3,84E-07	0,00	0,00	0,00	0,00	0,00

HWD: Hazardous waste disposed of; NHWD: Non-hazardous waste disposed of; RWD: Radioactive waste disposed of; NR: Not relevant

Output flows

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
CRU	Kg	0,06	0,00	0,00	0,00	0,00	0,00
MFR	Kg	3,11	0,00	0,12	0,00	1.175,65	10,33
MER	Kg	0,24	0,00	0,00	0,00	251,85	0,00
USA	MJ	0,00	0,00	0,00	0,00	0,00	0,00

CRU: Components for reuse; MFRs: Recycling Materials; MER: Materials for energy recovery; EE: Exported energy; NR: Not relevant

Biogenic Carbon Content Information

Biogenic carbon content	Unit	Profit per reported functional unit
Biogenic carbon content product - KgC	Kg C	
Biogenic carbon content packaging- KgC	Kg C	4,3

Environmental impacts

N1VV-K 1X630

The estimated impact results are relative and do not indicate the final value of the impact categories, nor do they refer to threshold values, safety margins or risks

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
GWP-total	kg CO2 eq	67.546,43	204,62	0,38	1,89	2.502,93	-20.044,76
GWP-fossil	kg CO2 eq	67.044,88	204,61	0,28	1,88	2.501,06	-19.982,70
GWP-biogenic	kg CO2 eq	403,92	6,94E-03	0,10	8,09E-03	0,67	-22,68
GWP-luluc	kg CO2 eq	97,63	4,99E-03	1,15E-05	1,18E-04	1,20	-39,38
ODP	kg CFC11 eq	1,18E-03	4,15E-06	2,87E-09	3,93E-08	8,99E-06	-1,85E-04
AP	Mole Equalizer H+	5.267,92	0,70	6,89E-04	6,13E-03	5,17	-263,53
EP-freash water	kg P eq	16,52	1,70E-04	4,47E-07	3,20E-05	0,04	-2,78
EP-marine	kg N eq	201,38	0,29	3,59E-04	9,45E-04	1,18	-41,54
EP-terrestrial	Mole N eq	2.897,72	3,22	3,28E-03	0,01	12,93	-573,17
POCP	Kg NMVOC eq	899,84	1,14	1,08E-03	5,00E-03	3,91	-137,09
ADP-Minerals and metals ²	kg Sb eq	73,68	6,71E-06	1,54E-08	2,73E-08	4,91E-05	-13,13
ADP-fossil ²	MJ	901.711,91	2.683,80	1,93	31,01	13.941,5 2	-237.372,87
WDP ²	m3	85.422,06	1,14	-0,21	1,39	181,41	-11.897,22

GWP - total: global warming potential; **GWP - fossil**: Global warming potential of fossil fuels; **GWP - biogenic**: Biogenic global warming potential; **GWP - luluc**: Global warming potential of land use and land use change; **ODP**: Stratospheric Ozone Depletion Potential; **AP**: Acidification potential, accumulated surplus; **EP-freshwater**: Eutrophication potential, fraction of nutrients that reach the final freshwater compartment; **EP-marine**: Eutrophication potential, accumulated surplus; **POCP**: Ground-level ozone formation potential; **ADP-minerals and metalsPotential for depletion of abiotic resources for non-fossil resources; APD-fossil**: potential for depletion of abiotic resources for fossil resources; **WDP**: Water deprivation potential (user), weighted deprivation consumption for water. **NR**: Not relevant

Additional environmental impacts

N1VV-K 1X630

Parameter	Parameter	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
PM	Incidence of diseases	0,01	1,72E-05	1,05E-08	2,42E-08	4,92E-05	-1,86E-03
IRP ¹	kBq U235 eq	3.544,60	0,37	3,45E-04	0,06	47,04	-612,96
ETP-fw ²	CTUe	4.541.893,80	103,43	1,75	1,44	4.638,18	-634.298,35
HTP-c ²	CTUh	7,46E-04	1,57E-08	9,75E-11	4,70E-10	3,62E-07	-3,73E-05
HTP-nc ²	CTUh	0,06	1,69E-06	3,75E-09	4,80E-09	9,23E-06	2,54E-04
SQP ²	-	1.519.027,82	6,01	0,76	4,04	1.658,76	-261.120,00

PM: Potential incidence of diseases due to emissions of particulate matter (PM); IRP: Human potential exposure efficiency relative to U235; ETP-fw: Comparative potential of toxic unit for ecosystems - freshwater; HTP-c: Comparative potential of toxic unit for ecosystems - carcinogenic effects; HTP-nc: Comparative potential of toxic unit for ecosystems non-carcinogenic effects; SQP: Soil quality potential index; NR: Not relevant

Notice 1: This impact category deals mainly with the eventual impacts of low doses of ionizing radiation on human health, of the nuclear fuel cycle. It does not consider the effects due to possible nuclear accidents or occupational exposure due to the disposal of radioactive waste in underground facilities. The potential for ionizing radiation of the soil, due to radon or some building materials is not measured with this parameter either.

Notice 2: The results of this environmental impact indicator should be used with caution, as the uncertainties of the results are high and experience with this parameter is limited

Resource Usage

N1VV-K 1X630

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
PERE	MJ	200.741,49	9,32	0,01	10,75	1.335,13	-59.574,16
PERM	MJ	55,12	0,00	0,00	0,00	0,00	0,00
PERT	MJ	200.796,61	9,32	0,01	10,75	1.335,13	-59.574,16
PENRE	MJ	884.925,38	2.683,80	1,93	31,01	13.941,52	-237.372,87
PENRM	MJ	16.786,52	0,00	0,00	0,00	0,00	0,00
PENRT	MJ	901.711,91	2.683,80	1,93	31,01	13.941,52	-237.372,87
SM	Kg	0,17	0,00	0,00	0,00	0,00	1.243,09
RSF (RSF)	MJ	0,11	0,00	0,00	0,00	0,00	0,00
NRSF	MJ	0,00	0,00	0,00	0,00	0,00	0,00
FW	m3	2.065,10	0,07	-4,66E-03	0,04	6,98	-495,40

PERE: Use of renewable primary energy, excluding renewable primary energy resources used as feedstocks; PERM: Use of renewable primary energy used as a feedstock; PERT: Total use of renewable primary energy; PENRE: Use of non-renewable primary energy, excluding non-renewable primary energy resources used as feedstocks; PENRM: Use of non-renewable primary energy used as a feedstock; PENRT: Total use of non-renewable primary energy; SM: Use of secondary materials; RSF: Use of renewable secondary fuels; NRSF: use of non-renewable secondary fuels; FW: Net use of piped water resources; NR: Not relevant

Waste Categories

N1VV-K 1X630

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
HWD	Kg	0,04	0,00	0,00	0,00	0,00	-4,58
NHWD	Kg	1,25	0,00	0,02	0,00	2.892,64	-1.129,30
RWD	Kg	3,84E-07	0,00	0,00	0,00	0,00	0,00

HWD: Hazardous waste disposed of; NHWD: Non-hazardous waste disposed of; RWD: Radioactive waste disposed of; NR: Not relevant

Output flows

Parameter	Unit	Manufactoring	Distribution	Installation	Use	End of life stage	Benefits
CRU	Kg	0,06	0,00	0,00	0,00	0,00	0,00
MFR	Kg	3,11	0,00	0,12	0,00	3.426,08	30,11
MER	Kg	0,24	0,00	0,00	0,00	608,58	0,00
USA	MJ	0,00	0,00	0,00	0,00	0,00	0,00

CRU: Components for reuse; MFRs: Recycling Materials; MER: Materials for energy recovery; EE: Exported energy; NR: Not relevant

Biogenic Carbon Content Information

Biogenic carbon content	Unit	Profit per reported functional unit
Biogenic carbon content product - KgC	Kg C	
Biogenic carbon content packaging- KgC	Kg C	1,23

References

- (1) General Instructions of GlobalEPD Programme 3rd revision (09-10-2023)
- (2) EN ISO 14025:2010 Environmental labels. Type III environmental claims. Principles and procedures (ISO 14025:2006).
- (3) Standard EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- (4) EN ISO 14040:2006/A1:2020 standard. Environmental management. Life cycle analysis. Principles and framework. 2006.
- (5) EN ISO 14044:2006/A1:2020 standard. Environmental management. Life cycle analysis. Requirements and guidelines. 2006

- (6) Functional analysis WebTool manual, version 4, 1.3.1, date 17/09/2025.
- (7) PCR PEP Ecopassport V4 e PSR-0001 wire and cables.

