

AENOR

Declaración Ambiental de Producto

EN ISO 14025:2010 EN 15804:2012+A2:2020

EGA PERFIL Perfiles técnicos de acero de construcción

Fecha de primera emisión: 2024-07-31 Fecha de expiración: 2029-07-30

La validez declarada está sujeta al registro y publicación en

Código de registro: GlobalEPD EN15804-082

EGA PERFIL S.L.

El titular de esta Declaración es el responsable de su contenido, así como de conservar durante el periodo de validez la documentación de apoyo que justifique los datos y afirmaciones que se incluyen

Ega perfil S.L

AVDA. DE LOS CASTAÑOS, 15 Tel. (+34) 948 321 620 POLÍGONO INDUSTRIAL SAN MIGUEL Mail egaperfil@egaperfil.com 31132 VILLATUERTA (NAVARRA) Web www.egaperfil.com

Estudio de ACV

ASOCIACION DE LAINDUSTRIA NAVARRA Dña. Irene Eslava Lecumberri Ctra. Pamplona nº 1 31191 Cordovilla Navarra España

Mail ieslava@ain.es Web <u>www.ain.es</u>

(+34) 948411101

(+34) 902 102 201

www.aenor.com

aenordap@aenor.com

Tel.

Tel.

Mail

Web

Administrador del Programa GlobalEPD

AENOR CONFÍA S.A.U. C/ Génova 6 28009 – Madrid España

AENOR es miembro fundador de ECO Platform, la Asociación Europea de Programas deverificación de Declaraciones ambientales de producto

La Norma Europea EN 15804:2012+A2:2020 sirve de base para las RCP			
Verificación independiente de la declaración y de los datos, de acuerdo conla Norma EN ISO 14025:2010			
□ Interna ⊠Externa			
Organismo de verificación			

AENOR

Entidad de certificación de producto acreditado por ENAC con acreditación Nº 1/C-PR468

1. Información general

1.1. La organización

EGA PERFIL es una empresa que fabrica perfiles técnicos.

Sus orígenes se pueden remontar al año 2000, fecha en la que se funda Perfil Espal S.L., empresa creada para la fabricación exclusiva de perfiles agrícolas. La evolución del mercado, el conocimiento del sector y la adquisición de nuevas máquinas, llevan a la empresa a seguir creciendo y abrir las puertas a nuevas áreas de negocio.

Es así como surge EGA Perfil, creada en el año 2006, orientada en un primer momento al sector de la construcción. Años después acoge ambas actividades, convirtiéndose en una sola empresa que realiza perfiles agrícolas y para construcción.

Se trata de una empresa internacional, sustentada en sus relaciones comerciales para no perder los valores que la han convertido en referente del mercado: calidad del producto y atención personal.

En la actualidad, EGA Perfil fabrica perfiles, enfocados a dos sectores concretos, agrícola y construcción.

Está ubicada en el Polígono Industrial San Miguel de Villatuerta (Navarra), en una parcela con 25.000 m² de superficie. La nave de producción ocupa una superficie de 5.000 m², y la nave almacén 3.000 m².

1.2. Alcance de la Declaración

Esta declaración ambiental de producto describe la información ambiental relativa al ciclo de vida de la producción de la cuna a la tumba y módulo D, incluyendo por tanto todos los módulos de información del ciclo de vida, de los perfiles técnicos de acero de construcción, fabricados por EGA PERFIL en su planta de Villatuerta (Navarra).

Esta declaración ambiental comprende los perfiles fabricados por EGA PERFIL indicados en el Anexo a esta declaración, así como sus funciones.

Los resultados reflejados en esta declaración ambiental corresponden al producto Montante 46 (M-46). Para obtener los resultados del resto de productos incluidos en esta declaración se debe multiplicar los resultados indicados por los factores de multiplicación indicados en dicho Anexo.

1.3. Ciclo de vida y conformidad.

Esta DAP ha sido desarrollada y verificada de acuerdo con las Normas UNE-EN ISO 14025:2010 y UNE-EN 15804:2012 +A2:2020/AC 2021.

Esta Declaración ambiental incluye las siguientes etapas del ciclo de vida:

Límites del sistema. Módulos de información considerados

<u>o</u> o	A1	Suministro de materias primas	
Etapa de oroducto	A2	Transporte a fábrica	Х
ш ш	А3	Fabricación	Х
ucción	A4	Transporte a obra	Х
Construcción	A5	Instalación / construcción	Х
	B1	Uso	Х
osn	B2	Mantenimiento	Х
Etapa d uso	В3	B3 Reparación	
Eta	B4	Sustitución	Х
B5		Rehabilitación	Х
·	B6	Uso de energía en servicio	Х
B7		Uso de agua en servicio	Х
da	C1	Deconstrucción / demolición	Х
Fin de vida	C2	Transporte	Х
Ë	C3 Tratamiento de los residuos		Х
C4		Eliminación	Х
	D	Potencial de reutilización, recuperación y/o reciclaje	Х
X = Módulo incluido en el ACV; NR = Módulo no relevante; MNE = Módulo no evaluado			

Esta DAP puede no ser comparable con las desarrolladas en otros Programas o conforme a documentos de referencia distintos, en concreto puede no ser comparable con DAP no elaboradas conforme a la Norma UNE-EN 15804+A2.

Del mismo modo, esta DAP pueden no ser comparables si el origen de los datos es distinto (por ejemplo, las bases de datos), no se incluyen todos los módulos de información pertinentes o no se basan en los mismos escenarios.

La comparación de productos de la construcción se debe hacer sobre la misma función, aplicando la misma unidad funcional y a nivel del edificio (u obra arquitectónica o de ingeniería) es decir, incluyendo el comportamiento del producto a lo largo de todo su ciclo de vida, así como las especificaciones del apartado 6.7.2 de la Norma UNE-EN ISO 14025.

2. El producto

2.1. Identificación del producto

Esta DAP es de aplicación a los perfiles de chapa de acero galvanizado, del tipo DX51D, revestimiento Z-140, AZ-100 o Z-275, para su uso en construcción, según norma UNE EN 14195 Elementos de perfilería metálica para su uso en sistemas de placas de yeso laminado y UNE EN 10436. Productos planos de acero recubiertos en continuo por inmersión en caliente.

Un perfil de acero es una pieza estructural fabricada con acero que tiene una forma específica y se utiliza en la construcción de estructuras metálicas.

Para la construcción de paredes de pladur, y tabiquería se requieren diferentes perfiles de acero galvanizado laminado en frio que cumplen funciones específicas en el sistema estructural.

Perfil canal: Se utiliza para el montaje de tabiques. Se coloca en la parte superior e inferior del tabique.

Perfil montante: Se utiliza para crear la estructura vertical de los tabiques. Se coloca perpendicularmente al perfil canal y se fija en el suelo y techo. Tiene perforaciones para el paso de instalaciones.

Perfil maestra: Se utiliza para revestir paredes existentes, permitiendo crear una nueva pared sin tener que levantar un tabique desde cero.

Perfiles perimetrales: Se utilizan para unir la estructura vertical con la estructura horizontal del techo.

Perfiles portantes: Se utilizan para crear la estructura portante del falso techo.

Todos los perfiles van serigrafiados con los datos de nombre de perfil, tipo de galvanizado, longitud, espesor, norma armonizada, reacción al fuego y los marcados CE y Aenor

2.2. Prestaciones del producto

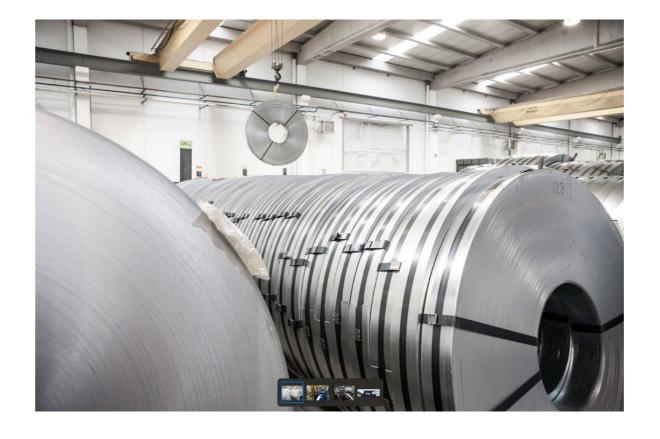
El fabricante declara la siguiente información sobre las especificaciones técnicas del producto:

Prestaciones del producto

Prestación	Método de cálculo o ensayo	Valor
Tolerancia de espesor de la chapa	EN 10029	Clase A
Resistencia frente al fuego	EN 14195	A1
Resistencia la flexión	EN 14195	Gama 4
Tipo de acero		DXD51D

Tolerancias dimensionales del producto

Prestación	Método de cálculo o ensayo	Valor
Espesor	UNE-EN 14195	<= 0,05 mm
Longitud (para longitudes <= 3000 mm)	UNE-EN 14195	<= 3 mm
Anchura	UNE-EN 14195	<= 0,5 mm
Dimensión Angular	UNE-EN 14195	<= 2°
Rectitud	UNE-EN 14195	<= L/400 mm
	UNE-EN 14195	Relación h/w < 0,1
Torsión		h= espacio;
		w= anchura nominal


2.3. Composición del producto

La composición declarada por el fabricante es la siguiente:

Composición del producto

Sustancia/	% peso total
Componente	
Acero	97%
Galvanizado (zinc)	3%

Durante el ciclo de vida del producto no se utilizan sustancias peligrosas listadas en "Candidate List of Substances of Very High Concern (SVHC) for authorisation" en un porcentaje mayor al 0,1% del peso del producto.

3. Información sobre el ACV

3.1. Análisis de ciclo de vida

Esta DAP está basada en un Análisis de Ciclo de Vida de los perfiles de acero galvanizado para construcción de EGA PERFIL, conforme a los requisitos de las normas internacionales ISO 14040:2006 y ISO 14044:2006. Y tomando como referencia la norma europea EN 15804+A2:2020.

El análisis ha sido realizado por la ASOCIACION DE LA INDUSTRIA NAVARRA con la base de datos Ecoinvent 3.8 EN15804, y el software Umberto 11.9.2.

Para la realización del análisis, se han utilizado los datos específicos del proceso de producción de los perfiles de acero de la planta de EGA PERFIL en Villatuerta (Navarra).

3.2. Unidad declarada

La unidad declarada es la producción de un metro lineal de perfil EGA PERFIL de acero galvanizado.

3.3. Vida útil de referencia (RSL)

La Vida Útil de Referencia (Reference Service Life, RSL) de los perfiles de acero galvanizado para construcción ha sido estimada en al menos 50 años. Durante ese tiempo puede permanecer instalada en el edificio sin necesidad de mantenimiento, reparación, sustitución o rehabilitación. El Código Técnico de la Edificación determina y acota el período de servicio de la estructura de un edificio y especifica el valor mínimo de 50 años para las estructuras de los edificios.

3.4. Criterios de asignación

De acuerdo con los criterios de la norma UNE-EN 15804:2012+A2:2020, cuando ha sido necesario, el criterio aplicado en el estudio de los perfiles de acero ha sido la asignación de las entradas y salidas del sistema en base a las propiedades físicas (masa).

Este criterio de asignación se ha aplicado para los consumos generales de fábrica y para los residuos.

No ha sido necesario aplicar otro tipo de criterios de asignación, como la asignación en base a valores económicos.

Conforme a los criterios de la norma, se ha incluido la masa total de todas las entradas utilizadas en el proceso de fabricación de los perfiles de acero, de manera que se obtenga al menos el 99% de la masa entrante en cada proceso unitario, y el 95% de la masa entrante por módulo.

No ha habido exclusión de materiales ni de consumos energéticos.

3.5. Representatividad, calidad y selección de los datos

Para modelar el proceso de fabricación se han utilizado los datos específicos del proceso de producción de los perfiles de acero de la planta de EGA PERFIL en Villatuerta correspondientes a los datos de producción del año 2021, que se considera representativo de las condiciones de producción actuales. Se han recopilado datos de consumos de materias primas. energía, materias auxiliares, envases / embalajes, generación de residuos y distancias y

modos de transporte. La energía eléctrica consumida es 100% renovable con garantía de origen.

Además, se ha utilizado Ecoinvent 3.8 EN15804, la base de datos de inventario del ciclo de vida más consistente y transparente. El ACV se ha modelado con Umberto 11.9.2. Los Factores de caracterización corresponden con los establecidos en la norma UNE EN15804: 2012 + A2: 2020.

La elección de los procesos en Ecoinvent se ha llevado a cabo aplicando los siguientes criterios:

- Representatividad tecnológica: datos representativos de la tecnología aplicada en los procesos. En caso de no ser conocida, se elige un dato representativo de una tecnología media (como combinación promedio de productores).
- Representatividad geográfica: se prioriza datos nacionales, seguidos de datos europeos. En caso contrario se utilizan datos globales.
- Representatividad temporal: se utilizan los datos más actuales posibles.

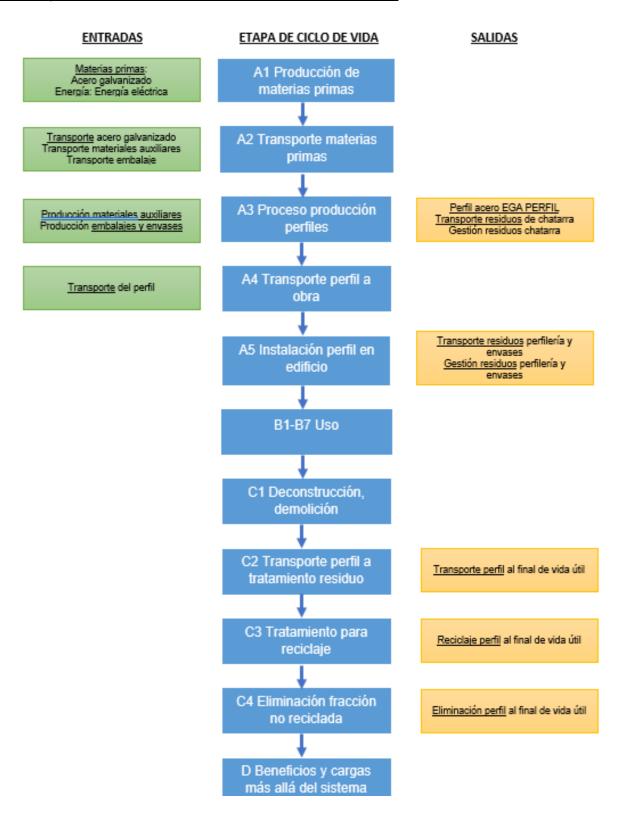
La evaluación de la calidad de los datos genéricos y específicos utilizados en el análisis se basa en uno de los sistemas propuestos en el anexo E de la norma UNE EN15804: 2012 + A2: 2020, concretamente en el esquema para evaluación de calidad de los datos y criterios de las directrices ambientales globales de la ONU sobre el desarrollo de las bases de datos de ACV.

La información de la evaluación de la calidad de los datos cubre los siguientes elementos: cobertura temporal, cobertura geográfica y cobertura tecnológica.

- Representatividad geográfica:
 - Datos específicos: Nivel de calidad muy bueno. Los datos específicos de fabricación proceden de la propia instalación de producción.
 - Datos genéricos: Nivel de calidad bueno. Proceden de base de datos; se seleccionan datos promedio a partir de mayor área en la que se incluye el área estudiada.
- Representatividad técnica:
 - Datos específicos: Nivel de calidad muy bueno. Los datos específicos de fabricación proceden de la propia instalación de producción.
 - Datos genéricos: Nivel de calidad bueno. Proceden de base de datos; se seleccionan datos con tecnologías acordes al proceso / producto estudiado, similares, o datos medios cuando se desconoce la tecnología.
- Representatividad temporal:
 - Datos específicos: Nivel de calidad muy bueno. Los datos específicos de fabricación son del año 2021, siendo éste un año representativo.
 - Datos genéricos: Nivel de calidad muy bueno. Proceden de base de datos; se seleccionan datos más recientes disponibles, entre los que se incluye el año de estudio.

3.6. Otras reglas de cálculo e hipótesis

Los resultados reflejados corresponden al producto Montante 46 (M-46).


Para obtener los resultados del resto de productos incluidos en esta declaración se deben multiplicar los resultados indicados por los factores de multiplicación indicados en el Anexo, calculados en base a las propiedades físicas (masa).

4. Límites del sistema, escenarios e información técnica adicional.

Diagrama de flujo de los procesos incluidos en los límites del sistema

4.1. Procesos previos a la fabricación (upstream).

Módulo A1 - Materias primas

Se incluye en este módulo:

- Extracción y procesado materias primas que constituyen el perfil.
- Generación de electricidad y calor a partir de energía primaria.

Módulo A2 -Transporte a la fábrica

Se ha evaluado el transporte de las materias primas y auxiliares empleadas en la producción del perfil, desde los puntos de producción hasta la instalación de EGA PERFIL. Las procedencias, y por tanto las distancias de transporte, y el modo de transporte han sido facilitadas por EGA PERFIL.

4.2. Fabricación del producto.

Módulo A3 - Fabricación

El proceso de producción de los perfiles de acero fabricados en EGA PERFIL sigue las siguientes fases:

- 1. Descarga, selección, control y almacenaje de materia prima.
- 2. Devanado automático de fleje.
- 3. Entrada a punzonado.
- 4. Perfilación.
- 5. Enderezado y corte.
- 6. Evacuación y empaquetado.
- Almacenamiento.

En este módulo se ha incluido:

- Producción de materiales auxiliares empleados en el proceso.
- Fabricación de envases y embalajes
- El tratamiento de los residuos

generados en el proceso de producción y su transporte hasta el punto de gestión

La información sobre el destino, y por tanto las distancias de transporte, y el modo de transporte de los residuos hasta el punto de gestión ha sido facilitado por EGA PERFIL.

4.3. Proceso de construcción

Módulo A4 -Transporte a la obra

Se ha considerado el transporte del perfil hasta la obra, teniendo en cuenta la distancia media desde las instalaciones de EGA PERFIL hasta el lugar de utilización, considerando un camión de 40 toneladas.

Módulo A4 Transporte a la obra

Información del escenario	Unidad (expresada por unidad declarada)
Tipo y consumo de combustible del vehículo, tipo de vehículos utilizados para el transporte	Camión EURO VI de >32 t
Distancia	500 km
Utilización de la capacidad	% asimilado a la base de datos Ecoinvent 3.8
Densidad aparente de los	-
productos transportados	
Factor de capacidad útil	No aplicable

Módulo A5 -Instalación

Durante el proceso de construcción, es decir de la instalación del perfil en el edificio, se ha tenido en cuenta la gestión de los residuos generados.

Módulo A5 Instalación

Información del escenario	Unidad (expresada por unidad declarada)
Materiales auxiliares para la instalación (especificando cada material)	No se requiere
Uso de agua	No se requiere
Uso de otros recursos	No se requiere
Descripción cuantitativa del tipo de energía (mix regional) y el consumo durante el proceso de instalación	No se requiere
Desperdicio de materiales en la obra antes de tratamiento de residuos, generados por la instalación del producto (especificando por tipo)	Recortes de perfilería: 2%. Residuos de embalaje: fleje PET, cartón, tacos de madera de pino
Salida de materiales (especificados por tipo) como resultado del tratamiento de residuos en la parcela del edificio, por ejemplo recogida para el reciclaje, valorización energética, eliminación (especificada por ruta)	Perfilería: recogida para reciclaje Residuos de embalaje: recogida para reciclaje
Emisiones directas al aire ambiente, al suelo y al agua	No se producen emisiones en el proceso de instalación

4.4. Uso vinculado a la estructura del edificio

Se considera que el perfil no requiere de ningún recurso en ninguno de los módulos de la etapa de uso:

- B1: uso o aplicación del producto instalado

- B2: mantenimiento

- B3: reparación

- B4: sustitución

- B5: rehabilitación

Uso vinculado a la estructura del edificio

Información del escenario	Unidad (expresada por unidad declarada)

R7	Man	tenim	niento
-	IVIGII		

::::::::::::::::::::::::::::::::::::			
Proceso de mantenimiento	No se requiere		
Ciclo de mantenimiento	No se requiere		
Materiales auxiliares para el mantenimiento (especificando cada material)	No se requiere		
Desperdicio de material durante el mantenimiento	No se requiere		
Consumo neto de agua corriente	No se requiere		
Entrada de energía durante el mantenimiento, tipo de vector energético y cantidad, si es aplicable y pertinente	No se requiere		

B3 Reparación

Proceso de reparación	No se requiere
Proceso de inspección	No se requiere
Ciclo de reparación	No se requiere
Materiales auxiliares, especificando cada material	No se requiere
Desperdicio de material durante la reparación (especificando cada material)	No se requiere
Consumo neto de agua corriente	No se requiere
Entrada de energía durante la reparación, tipo de vector energético y cantidad	No se requiere

B4 Sustitución

Ciclo de sustitución	No se requiere
Entrada de energía durante la sustitución, tipo de vector energético y cantidad, si es aplicable y pertinente	No se requiere
Cambio de piezas desgastadas en el ciclo de vida del producto, especificando cada material	No se requiere

B5 Rehabilitación

Proceso de rehabilitación	No se requiere
Ciclo de rehabilitación	No se requiere
Entrada de energía durante la rehabilitación, tipo de vector energético y cantidad, si es aplicable y pertinente	No se requiere
Material de entrada para la rehabilitación, incluyendo los materiales auxiliares para el proceso, especificando cada material	No se requiere
Desperdicio de material durante la rehabilitación (especificando cada material)	No se requiere
Otros supuestos de desarrollo de escenarios.	No se requiere

4.5. Uso vinculado al funcionamiento del edificio

Se considera que el perfil no requiere de ningún recurso en ninguno de los módulos de la etapa de uso:

- B6: uso de energía en servicio
- B7: uso de agua en servicio

Uso de energía y uso de agua vinculado al funcionamiento del edificio

Información del escenario	Unidad (expresada por unidad declarada)
Materiales auxiliares, especificados por material	No se requiere
Consumo neto de agua corriente	No se requiere
Tipo de vector energético, por ejemplo electricidad, gas natural, calefacción urbana	No se requiere
Potencia de salida de los equipos	No se requiere
Prestaciones características	No se requiere
Otros supuestos de desarrollo de escenarios	No se requiere

4.6. Etapa de fin de vida

Módulo C1 – Deconstrucción / demolición

Se ha considerado que, el consumo de materiales y energía asociado a la deconstrucción de los perfiles de acero no es relevante respecto al proceso de deconstrucción / demolición del edificio.

Módulo C2 – Transporte hasta lugar de tratamiento

Se ha asumido que la distancia media desde el lugar donde se lleva a cabo la deconstrucción al centro de tratamiento final es de 50 km y que el transporte se realiza en camiones de 16-32 toneladas.

Módulo C3 – Tratamiento para su reciclaje

Para determinar los porcentajes de reciclado y envío a vertedero del perfil de acero, se han considerado los criterios incluidos en la Parte C del Anexo 2 de la Recomendación (UE) 2021/2279 de la Comisión de 15 de diciembre de 2021, sobre el uso de los métodos de la huella

ambiental para medir y comunicar el comportamiento ambiental de los productos y las organizaciones a lo largo de su ciclo de vida. Concretamente la última versión V2.1 (mayo 2020) de la Lista de parámetros predeterminados de la fórmula de la huella circular de la metodología de la Huella Ambiental de la Unión Europea.

Aplicando dichos valores se obtiene que la ratio de reciclaje de perfil de acero en demolición será al menos del 95%.

Módulo C4 – Eliminación de la fracción no reciclada

Se ha considerado que la fracción no reciclada, es decir, el 5%, se deposita en vertedero de residuos de construcción y demolición.

Fin de vida

Parámetro	Unidad (expresada por unidad funcional
Proceso de recogida,	95% del perfil recogido por separado
especificado por tipo	5% del perfil con mezcla de residuos construcción
Sistema de recuperación, especificado por tipo	100% del recogido para reciclaje se recupera
Eliminación, especificada por tipo	5% del perfil a eliminación en vertedero
Hipótesis para el desarrollo de escenarios	Camión EURO VI de 16- 32 t Centro tratamiento a 50 km

4.7. Beneficios y cargas más allá del sistema

Se han aplicado los coeficientes de recuperación del residuo de perfil destinado a reciclado de acuerdo con los criterios incluidos en la Parte C del Anexo 2 de la Recomendación (UE) 2021/2279 de la Comisión de 15 de diciembre de 2021, sobre el uso de los métodos de la huella ambiental para medir y comunicar el comportamiento ambiental de los productos organizaciones a lo largo de su ciclo de vida. Concretamente la última versión V2.1 (mayo parámetros 2020) de la Lista de predeterminados de la fórmula de la huella circular de la metodología de la Huella

Ambiental de la Unión Europea. En el caso del acero, este valor es 1.

Aplicando dicho valor se obtiene que la ratio de recuperación de perfil de acero en demolición será el 100% del 95% que se destina a reciclaje.

Considerando que la cantidad de acero procedente de reciclado en el acero materia prima para fabricar el perfil es del 36,09%, el potencial beneficio ambiental calculado para este módulo D está basado en la cantidad neta de chatarra en el sistema; es decir en el 63,91% de acero destinado a reciclaje.

5. Declaración de los parámetros ambientales del ACV y del ICV.

Impactos ambientales.

Los resultados de impacto estimados son relativos y no indican el valor final de las categorías de impacto, ni hacen referencia a valores umbral, márgenes de seguridad o riesgos

Parámetro	Unidades	A1	A2	А3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
GWP-total	kg CO2 eq	1,73E+00	3,42E-02	-8,46E-03	1,76E+00	2,48E-02	3,17E-02	0,00E+00	0,00E+00	4,55E-03	4,73E-03	1,47E-04	-5,90E-01
GWP-fossil	kg CO2 eq	1,71E+00	3,41E-02	1,83E-03	1,74E+00	2,47E-02	3,12E-02	0,00E+00	0,00E+00	4,53E-03	4,70E-03	1,46E-04	-5,91E-01
GWP-biogenic	kg CO2 eq	2,62E-02	1,26E-04	-1,03E-02	1,60E-02	8,11E-05	4,77E-04	0,00E+00	0,00E+00	1,57E-05	2,21E-05	3,73E-07	1,01E-03
GWP-luluc	kg CO2 eq	1,80E-03	1,40E-05	1,63E-05	1,83E-03	9,25E-06	3,47E-05	0,00E+00	0,00E+00	1,81E-06	2,31E-06	1,38E-07	-1,67E-04
ODP	kg CFC11 eq	1,06E-07	7,86E-09	3,13E-09	1,17E-07	6,15E-09	1,78E-09	0,00E+00	0,00E+00	1,05E-09	1,08E-09	5,92E-11	-2,30E-08
AP	mol H+ eq	8,00E-03	1,02E-04	1,16E-05	8,11E-03	7,86E-05	1,54E-04	0,00E+00	0,00E+00	1,29E-05	2,76E-05	1,38E-06	-2,14E-03
EP-freshwater	kg PO4 eq	9,02E-04	2,48E-06	6,90E-07	9,05E-04	1,66E-06	1,74E-05	0,00E+00	0,00E+00	3,10E-07	3,96E-07	1,36E-08	-2,35E-04
EP-marine	kg N eq	1,89E-03	2,17E-05	3,37E-06	1,92E-03	1,77E-05	3,66E-05	0,00E+00	0,00E+00	2,63E-06	1,01E-05	4,79E-07	-5,05E-04
EP-terrestrial	mol N eq	1,84E-02	2,36E-04	3,52E-05	1,87E-02	1,92E-04	3,56E-04	0,00E+00	0,00E+00	2,85E-05	1,10E-04	5,24E-06	-5,35E-03
POCP	Kg NMVOC eq	7,44E-03	8,87E-05	1,53E-05	7,54E-03	7,57E-05	1,44E-04	0,00E+00	0,00E+00	1,10E-05	3,12E-05	1,52E-06	-2,96E-03
ADP-minerals& metals ²	kg Sb eq	1,03E-04	1,43E-07	1,48E-08	1,03E-04	6,05E-08	2,05E-06	0,00E+00	0,00E+00	1,64E-08	1,62E-08	3,36E-10	-4,53E-07
ADP-fossil ²	MJ	2,05E+01	5,07E-01	3,89E-02	2,10E+01	3,94E-01	3,62E-01	0,00E+00	0,00E+00	6,74E-02	7,07E-02	4,01E-03	-5,90E+00
WDP ²	m^3	1,02E+00	2,44E-03	1,05E-03	1,03E+00	1,82E-03	1,99E-02	0,00E+00	0,00E+00	3,15E-04	3,81E-04	1,27E-05	-4,20E-02

GWP - total: Potencial de calentamiento global; **GWP - fossil**: Potencial de calentamiento global biogénico; **GWP - luluc**: Potencial de calentamiento global del uso y cambio del uso del suelo; **ODP**: Potencial de agotamiento de la capa de ozono estratosférico; **AP**: Potencial de acidificación, excedente acumulado; **EP-freshwater**: Potencial de eutrofización, fracción de nutrientes que alcanzan el compartimento final de agua dulce; **EP-marine**: Potencial de eutrofización, fracción de nutrientes que alcanzan el compartimento final de agua marina; **EP-terrestrial**: Potencial de eutrofización, excedente acumulado; **POCP**: Potencial de formación de ozono troposférico; **ADP-minerals&metals**Potencial de agotamiento de recursos abióticos para los recursos no fósiles; **WDP**: Potencial de privación de agua (usuario), consumo de privación ponderada de agua. **NR**: No relevante

Impactos ambientales adicionales

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
PM	Incidencia de enfremedades	1,21E-07	2,80E-09	3,21E-10	1,24E-07	2,86E-09	2,39E-09	0,00E+00	0,00E+00	3,65E-10	5,06E-10	2,77E-11	-3,94E-08
IRP ¹	kBq U235 eq	1,50E-01	2,69E-03	3,01E-04	1,53E-01	2,03E-03	2,76E-03	0,00E+00	0,00E+00	3,54E-04	3,95E-04	1,82E-05	-1,04E-02
ETP-fw ²	CTUe	9,05E+01	4,29E-01	4,22E-02	9,09E+01	3,28E-01	1,79E+00	0,00E+00	0,00E+00	5,62E-02	6,00E-02	2,62E-03	-1,82E+01
HTP-c ²	CTUh	1,14E-08	1,52E-11	1,84E-12	1,14E-08	8,52E-12	2,24E-10	0,00E+00	0,00E+00	1,73E-12	2,40E-12	6,55E-14	-3,18E-09
HTP-nc ²	CTUh	6,98E-08	4,27E-10	3,87E-11	7,03E-08	3,33E-10	1,38E-09	0,00E+00	0,00E+00	5,51E-11	6,57E-11	1,71E-12	-1,27E-08
SQP ²	-	6,17E+00	3,54E-01	1,15E+00	7,67E+00	4,59E-01	1,20E-01	0,00E+00	0,00E+00	4,79E-02	6,09E-02	8,58E-03	-1,13E+00

PM: Potencial de incidencia de enfermedades debidas a las emisiones de materia particulada (PM); IRP : Eficiencia de exposición del potencial humano relativo al U235; ETP-fw: Potencial comparativo de unidad tóxica para los ecosistemas - agua dulce; HTP-c: Potencial comparativo de unidad tóxica para los ecosistemas - efectos cancerígenos; HTP-nc: Potencial comparativo de unidad tóxica para los ecosistemas - efectos no cancerígenos; SQP: Índice de potencial de calidad del suelo.; NR: No relevante

Aviso 1: Esta categoría de impacto trata principalmente con los impactos eventuales de las dosis bajas de las radiaciones ionizantes sobre la salud humana, del ciclo del combustible nuclear. No considera los efectos debido a posibles accidentes nucleares ni la exposición ocupacional debida a la eliminación de residuos radiactivos en las instalaciones subterráneas. El potencial de radiación ionizante del suelo, debida al radón o de algunos materiales de construcción no se mide tampoco con este parámetro.

Aviso 2: Los resultados de este indicador de impacto ambiental deben utilizarse con prudencia, ya que las incertidumbres de los resultados son elevadas y la experiencia con este parámetro es limitada

Uso de recursos

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A 5	B1-B7	C1	C2	C3	C4	D
PERE	MJ	1,90E+00	7,71E-03	2,13E-01	2,12E+00	5,10E-03	3,51E-02	0,00E+00	0,00E+00	9,80E-04	1,28E-03	3,49E-05	-1,23E-01
PERM	MJ	0,00E+00	0,00E+00	1,18E-01	1,18E-01	0,00E+00	-1,18E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	1,90E+00	7,71E-03	3,31E-01	2,23E+00	5,10E-03	-8,34E-02	0,00E+00	0,00E+00	9,80E-04	1,28E-03	3,49E-05	-1,23E-01
PENRE	MJ	2,05E+01	5,07E-01	3,89E-02	2,10E+01	3,94E-01	3,62E-01	0,00E+00	0,00E+00	6,74E-02	7,07E-02	4,01E-03	-5,90E+00
PENRM	MJ	2,84E-04	0,00E+00	7,88E-03	8,16E-03	0,00E+00	-8,16E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	2,05E+01	5,07E-01	4,68E-02	2,11E+01	3,94E-01	3,54E-01	0,00E+00	0,00E+00	6,74E-02	7,07E-02	4,01E-03	-5,90E+00
SM	kg	2,27E-01	1,78E-04	1,07E-02	2,38E-01	1,11E-04	1,56E-02	0,00E+00	0,00E+00	2,29E-05	5,28E-01	8,43E-07	3,51E-01
RSF	MJ	1,49E-04	1,93E-06	1,76E-06	1,52E-04	9,79E-07	2,91E-06	0,00E+00	0,00E+00	2,52E-07	2,45E-07	2,20E-08	-6,49E-06
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m³	1,89E-02	6,62E-05	2,43E-05	1,90E-02	5,23E-05	3,66E-04	0,00E+00	0,00E+00	8,59E-06	1,06E-05	4,39E-06	-1,02E-03

PERE: Uso de energía primaria renovable excluyendo los recursos de energía primaria renovable utilizada como materia prima; PERT: Uso de energía primaria renovable utilizada como materia prima; PERT: Uso total de la energía primaria renovable; PENRE: Uso de energía primaria no renovable, excluyendo los recursos de energía primaria no renovable utilizada como materia prima; PENRM: Uso de la energía primaria no renovable utilizada como materia prima; PENRT: Uso total de la energía primaria no renovable; SM: Uso de materiales secundarios; RSF: Uso de combustibles secundarios renovables; NRSF: Uso de combustibles secundarios no renovables; FW: Uso neto de recursos de aqua corriente; NR: No relevante

Categorías de residuos

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A 5	B1-B7	C1	C2	C3	C4	D
HWD	kg	5,50E-01	6,02E-04	9,77E-05	5,51E-01	4,22E-04	1,08E-02	0,00E+00	0,00E+00	7,67E-05	9,38E-05	4,26E-06	-5,49E-02
NHWD	kg	3,25E+00	1,09E-02	2,58E-03	3,26E+00	7,35E-03	6,22E-02	0,00E+00	0,00E+00	1,36E-03	1,75E-03	6,01E-05	-1,13E+00
RWD	kg	5,68E-05	3,49E-06	1,76E-07	6,05E-05	2,72E-06	1,07E-06	0,00E+00	0,00E+00	4,64E-07	4,84E-07	2,68E-08	-6,05E-06

HWD: Residuos peligrosos eliminados; NHWD: Residuos no peligrosos eliminados; RWD: Residuos radiactivos eliminados; NR: No relevante

Flujos de salida

Parámetro	Unidades	A 1	A2	А3	A1-A3	A 4	A 5	B1-B7	C1	C2	C3	C4	D
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	1,31E-03	1,63E-06	2,42E-07	1,32E-03	1,28E-06	2,57E-05	0,00E+00	0,00E+00	2,11E-07	2,32E-07	8,03E-09	-4,78E-05
MER	kg	5,14E-06	1,30E-08	5,92E-08	5,21E-06	9,06E-09	1,01E-07	0,00E+00	0,00E+00	1,70E-09	1,87E-09	9,51E-11	-1,50E-07
EE	MJ	7,58E-02	5,79E-04	1,40E-04	7,65E-02	4,70E-04	1,44E-03	0,00E+00	0,00E+00	7,57E-05	9,47E-05	6,77E-06	-2,93E-03

CRU: Componentes para su reutilización; MFR: Materiales para el reciclaje; MER: Materiales para valorización energética; EE: Energía exportada; NR: No relevante

6. Información ambiental adicional.

Emisiones al aire interior.

Los perfiles de acero no generan emisiones al aire interior, durante su vida útil.

Liberación al suelo y al agua.

Los perfiles de acero no generan emisiones al suelo o al agua, durante su vida útil.

Referencias

- [1] Instrucciones Generales del Programa GlobalEPD 3ª revisión 09-10 2023
- [2] UNE-EN ISO 14025:2010 Etiquetas ambientales. Declaraciones ambientales tipo III. Principios y procedimientos (ISO 14025:2006).
- [3] Norma UNE-EN 15804:2012+A2:2020 Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.
- [4] Norma UNE-EN ISO 14040. Gestión Ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. 2006.
- [5] Norma UNE-EN ISO 14044. Gestión Ambiental. Análisis de Ciclo de Vida. Requisitos y directrices. 2006.

- [6] Informe Análisis de ciclo de vida Perfiles técnicos de acero de EGA PERFIL. Redactado por AIN, Junio 2024. Versión 4
- [7] Base de datos Ecoinvent 3.8 EN15804 y software Umberto 11.9.2.
- [8] Recomendación (UE) 2021/2279 de la Comisión de 15 de diciembre de 2021, sobre el uso de los métodos de la huella ambiental para medir y comunicar el comportamiento ambiental de los productos y las organizaciones a lo largo de su ciclo de vida.

Índice

1.	Información general	3
2.	El producto	5
3.	Información sobre el ACV	7
4.	Límites del sistema, escenarios e información técnica adicional.	9
5.	Declaración de los parámetros ambientales del ACV y del ICV.	14
6.	Información ambiental adicional	18
Ref	erencias	19
ĺndi	ce	19
Ane	xo 1: Listado de productos incluidos en la DAP y factores de multiplicación	20
Ane	xo 2: Resultados perfil más pequeño (CLIP) v más grande (M-100 EXTERIOR (2 mm))	23

Anexo 1: Listado de productos incluidos en la DAP y factores de multiplicación

Referencia	Denominación	Función	Factor
Angular 30*30	Angular 30 x 30	Elemento perimetral y de unión del techo con los	0,491
Angular 30*30	Angular (d) 30 x 30	paramentos verticales Elemento perimetral y de unión del techo con los	0,541
D D	Aligulai (u) 30 x 30	paramentos verticales	0,541
C-36	Canal 36	Elementos perimetrales horizontales que conforman,	0,714
		junto con los montantes, la estructura portante de los	,
		tabiques, trasdosados y algún tipo de techo en los	
_		sistemas de placa de yeso laminado	
C-46	Canal 46	Elementos perimetrales horizontales que conforman,	0,808
		junto con los montantes, la estructura portante de los	
		tabiques, trasdosados y algún tipo de techo en los sistemas de placa de yeso laminado	
C-48	Canal 48	Elementos perimetrales horizontales que conforman,	0,808
C 40	odnar 10	junto con los montantes, la estructura portante de los	0,000
		tabiques, trasdosados y algún tipo de techo en los	
		sistemas de placa de yeso laminado	
C-70	Canal 70	Elementos perimetrales horizontales que conforman,	0,994
		junto con los montantes, la estructura portante de los	
		tabiques, trasdosados y algún tipo de techo en los	
0.00	0	sistemas de placa de yeso laminado	4.440
C-90	Canal 90	Elementos perimetrales horizontales que conforman,	1,149
		junto con los montantes, la estructura portante de los tabiques, trasdosados y algún tipo de techo en los	
		sistemas de placa de yeso laminado	
CLIP	Canal Clip	Elemento perimetral y de unión del techo con los	0,427
	Cantai Ciip	paramentos verticales	0,
M-36	Montante 36	Forma la estructura portante de los tabiques,	0,926
		trasdosado y techos en sistemas de placa de yeso	
		laminado	
M-46	Montante 46	Forma la estructura portante de los tabiques,	1,000
		trasdosado y techos en sistemas de placa de yeso laminado	
M-48	Montante 48	Forma la estructura portante de los tabiques,	1,000
141-40	Workante 40	trasdosado y techos en sistemas de placa de yeso	1,000
		laminado	
M-70	Montante 70	Forma la estructura portante de los tabiques,	1,203
		trasdosado y techos en sistemas de placa de yeso	
		laminado	
M-90	Montante 90	Forma la estructura portante de los tabiques,	1,441
		trasdosado y techos en sistemas de placa de yeso	
MAE-70/30	Omega 70/30	laminado Formación de estructura en sistemas de techo continuo	0,994
IVIAE-1 U/3U	Offiega 70/30	y trasdosados de placa de yeso laminado	0,994
MAE-80	Omega 80	Formación de estructura en sistemas de techo continuo	0,808
12 00	J.noga oo	y trasdosados de placa de yeso laminado	0,000
MAE-80 D	Omega 80 (d)	Formación de estructura en sistemas de techo continuo	0,854
	J ()	y trasdosados de placa de yeso laminado	
OME-20/30/20	Omega 20/30/20	Formación de estructura de cubiertas de todo tipo de	1,025
		materiales de construcción como paneles, chapas,	
DO 45	D (10) T2 (-	maderas, etc.	0 ====
PS-47	Perfil Sierra TC-47	Estructura portante del falso techo en determinados	0,779
DS 47 60	Dorfil Siorro TC 47 /	sistemas de techo continuo	0.006
PS-47-60	Perfil Sierra TC-47 / TC-60		0,836
TC-45	Techo continuo 45	Elemento portante y determinante del plano en techos	0,788

Referencia	Denominación	Función	Factor
TC-47	Techo continuo 47	Elemento portante y determinante del plano en techos continuos de placa de yeso laminado	0,822
TC-60	Techo continuo 60	Elemento portante y determinante del plano en techos continuos de placa de yeso laminado	1,025
U-31	Perfil U 31	Estructura portante de estanterías y muebles de obra realizados con paneles	0,691
C-50 INTERIOR	Canales norma DIN Sistemas de interior Canales 50	Elementos perimetrales horizontales que conforman, junto con los montantes DIN Sistema de Interior, la estructura portante de los tabiques, trasdosados y falsos techos de placas de alta resistencia y durabilidad	0,986
C-75 NTERIOR	Canales norma DIN Sistemas de interior Canales 75	Elementos perimetrales horizontales que conforman, junto con los montantes DIN Sistema de Interior, la estructura portante de los tabiques, trasdosados y falsos techos de placas de alta resistencia y durabilidad	1,180
C-100 INTERIOR	Canales norma DIN Sistemas de interior Canales 100	Elementos perimetrales horizontales que conforman, junto con los montantes DIN Sistema de Interior, la estructura portante de los tabiques, trasdosados y falsos techos de placas de alta resistencia y durabilidad	1,374
M-50 INTERIOR	Montantes norma DIN Sistemas de interior Montantes 50	Forma la estructura portante de los tabiques, trasdosados y falsos techos de placas de alta resistencia y durabilidad	1,246
M-75 INTERIOR	Montantes norma DIN Sistemas de interior Montantes 75	Forma la estructura portante de los tabiques, trasdosados y falsos techos de placas de alta resistencia y durabilidad	1,450
M-100 INTERIOR	Montantes norma DIN Sistemas de interior Montantes 100	Forma la estructura portante de los tabiques, trasdosados y falsos techos de placas de alta resistencia y durabilidad	1,669
C-50 EXTERIOR (0,7 MM)	Canales norma DIN Sistemas de exterior Canales 50. Espesor 0,7 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas para exteriores	1,245
C-75 EXTERIOR (0,7 MM)	Canales norma DIN Sistemas de exterior Canales 75. Espesor 0,7 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas para exteriores	1,493
C-100 EXTERIOR (0,7 MM)	Canales norma DIN Sistemas de exterior Canales 100. Espesor 0,7 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas para exteriores	1,739
C-50 EXTERIOR (1 MM)	Canales norma DIN Sistemas de exterior Canales 50. Espesor 1 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas para exteriores	1,779
C-75 EXTERIOR (1 MM)	Canales norma DIN Sistemas de exterior Canales 75. Espesor 1 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas para exteriores	2,131
C-100 EXTERIOR (1 MM)	Canales norma DIN Sistemas de exterior Canales 100. Espesor 1 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas para exteriores	2,486
M-50 EXTERIOR (0,7 MM)	Montantes norma DIN Sistemas de exterior Montantes 50. Espesor 0,7 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas de interiores	1,473

Referencia	Denominación	Función	Factor
M-75 EXTERIOR (0,7 MM)	Montantes norma DIN Sistemas de exterior Montantes 75. Espesor 0,7 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas de interiores	1,710
M-100 EXTERIOR (0,7 MM)	Montantes norma DIN Sistemas de exterior Montantes 100. Espesor 0,7 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas de interiores	1,977
M-50 EXTERIOR (1 MM)	Montantes norma DIN Sistemas de exterior Montantes 50. Espesor 1 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas de interiores	2,104
M-75 EXTERIOR (1 MM)	Montantes norma DIN Sistemas de exterior Montantes 75. Espesor 1 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas de interiores	2,442
M-100 EXTERIOR (1 MM)	Montantes norma DIN Sistemas de exterior Montantes 100. Espesor 1 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas de interiores	2,824
M-75 EXTERIOR (2 MM)	Montantes norma DIN Sistemas de exterior Montantes 75. Espesor 2 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas de interiores	4,854
M-100 EXTERIOR (2 MM)	Montantes norma DIN Sistemas de exterior Montantes 100. Espesor 2 mm	Estructura portante para sistemas de fachadas ventiladas o ciegas, y cubiertas ligeras de placas cementadas de interiores	5,534

Anexo 2: Resultados perfil más pequeño (CLIP) y más grande (M-100 EXTERIOR (2 mm))

<u>CLIP</u> Impactos ambientales.

Los resultados de impacto estimados son relativos y no indican el valor final de las categorías de impacto, ni hacen referencia a valores umbral, márgenes de seguridad o riesgos

Parámetro	Unidades	A1	A2	А3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
GWP-total	kg CO2 eq	7,39E-01	1,46E-02	-3,61E-03	7,52E-01	1,06E-02	1,35E-02	0,00E+00	0,00E+00	1,94E-03	2,02E-03	6,28E-05	-2,52E-01
GWP-fossil	kg CO2 eq	7,30E-01	1,46E-02	7,82E-04	7,43E-01	1,05E-02	1,33E-02	0,00E+00	0,00E+00	1,93E-03	2,01E-03	6,24E-05	-2,52E-01
GWP-biogenic	kg CO2 eq	1,12E-02	5,38E-05	-4,40E-03	6,83E-03	3,46E-05	2,04E-04	0,00E+00	0,00E+00	6,71E-06	9,44E-06	1,59E-07	4,31E-04
GWP-luluc	kg CO2 eq	7,69E-04	5,98E-06	6,96E-06	7,82E-04	3,95E-06	1,48E-05	0,00E+00	0,00E+00	7,73E-07	9,87E-07	5,89E-08	-7,13E-05
ODP	kg CFC11 eq	4,53E-08	3,36E-09	1,34E-09	5,00E-08	2,63E-09	7,60E-10	0,00E+00	0,00E+00	4,48E-10	4,61E-10	2,53E-11	-9,82E-09
AP	mol H+ eq	3,42E-03	4,36E-05	4,95E-06	3,46E-03	3,36E-05	6,58E-05	0,00E+00	0,00E+00	5,51E-06	1,18E-05	5,89E-07	-9,14E-04
EP-freshwater	kg PO4 eq	3,85E-04	1,06E-06	2,95E-07	3,87E-04	7,09E-07	7,43E-06	0,00E+00	0,00E+00	1,32E-07	1,69E-07	5,81E-09	-1,00E-04
EP-marine	kg N eq	8,07E-04	9,27E-06	1,44E-06	8,20E-04	7,56E-06	1,56E-05	0,00E+00	0,00E+00	1,12E-06	4,31E-06	2,05E-07	-2,16E-04
EP-terrestrial	mol N eq	7,86E-03	1,01E-04	1,50E-05	7,99E-03	8,20E-05	1,52E-04	0,00E+00	0,00E+00	1,22E-05	4,70E-05	2,24E-06	-2,28E-03
POCP	Kg NMVOC eq	3,18E-03	3,79E-05	6,53E-06	3,22E-03	3,23E-05	6,15E-05	0,00E+00	0,00E+00	4,70E-06	1,33E-05	6,49E-07	-1,26E-03
ADP-minerals& metals ²	kg Sb eq	4,40E-05	6,11E-08	6,32E-09	4,40E-05	2,58E-08	8,76E-07	0,00E+00	0,00E+00	7,00E-09	6,92E-09	1,44E-10	-1,93E-07
ADP-fossil ²	MJ	8,76E+00	2,17E-01	1,66E-02	8,97E+00	1,68E-01	1,55E-01	0,00E+00	0,00E+00	2,88E-02	3,02E-02	1,71E-03	-2,52E+00
WDP ²	m ³	4,36E-01	1,04E-03	4,48E-04	4,40E-01	7,77E-04	8,50E-03	0,00E+00	0,00E+00	1,35E-04	1,63E-04	5,42E-06	-1,79E-02

GWP - total: Potencial de calentamiento global; **GWP - fossil**: Potencial de calentamiento global de los combustibles fósiles; **GWP - biogenic**: Potencial de calentamiento global biogénico; **GWP - luluc**: Potencial de calentamiento global del uso y cambio del uso del suelo; **ODP**: Potencial de agotamiento de la capa de ozono estratosférico; **AP**: Potencial de acidificación, excedente acumulado; **EP-freshwater**: Potencial de eutrofización, fracción de nutrientes que alcanzan el compartimento final de agua marina; **EP-terrestrial**: Potencial de eutrofización, excedente acumulado; **POCP**: Potencial de formación de ozono troposférico; **ADP-minerals&metals**Potencial de agotamiento de recursos abióticos para los recursos no fósiles; **APD-fossil**: Potencial de agotamiento de recursos abióticos para los recursos fósiles; **WDP**: Potencial de privación de agua (usuario), consumo de privación ponderada de agua. **NR**: No relevante

Impactos ambientales adicionales

Parámetro	Unidades	A 1	A2	А3	A1-A3	A 4	A 5	B1-B7	C1	C2	C3	C4	D
PM	Incidencia de enfremedades	5,17E-08	1,20E-09	1,37E-10	5,30E-08	1,22E-09	1,02E-09	0,00E+00	0,00E+00	1,56E-10	2,16E-10	1,18E-11	-1,68E-08
IRP ¹	kBq U235 eq	6,41E-02	1,15E-03	1,29E-04	6,53E-02	8,67E-04	1,18E-03	0,00E+00	0,00E+00	1,51E-04	1,69E-04	7,77E-06	-4,44E-03
ETP-fw ²	CTUe	3,87E+01	1,83E-01	1,80E-02	3,88E+01	1,40E-01	7,64E-01	0,00E+00	0,00E+00	2,40E-02	2,56E-02	1,12E-03	-7,77E+00
HTP-c ²	CTUh	4,87E-09	6,49E-12	7,86E-13	4,87E-09	3,64E-12	9,57E-11	0,00E+00	0,00E+00	7,39E-13	1,03E-12	2,80E-14	-1,36E-09
HTP-nc ²	CTUh	2,98E-08	1,82E-10	1,65E-11	3,00E-08	1,42E-10	5,89E-10	0,00E+00	0,00E+00	2,35E-11	2,81E-11	7,30E-13	-5,42E-09
SQP ²	-	2,64E+00	1,51E-01	4,91E-01	3,28E+00	1,96E-01	5,13E-02	0,00E+00	0,00E+00	2,05E-02	2,60E-02	3,66E-03	-4,83E-01

PM: Potencial de incidencia de enfermedades debidas a las emisiones de materia particulada (PM); IRP : Eficiencia de exposición del potencial humano relativo al U235; ETP-fw: Potencial comparativo de unidad tóxica para los ecosistemas - agua dulce; HTP-c: Potencial comparativo de unidad tóxica para los ecosistemas - efectos cancerígenos; HTP-nc: Potencial comparativo de unidad tóxica para los ecosistemas - efectos no cancerígenos; SQP: Índice de potencial de calidad del suelo.: NR: No relevante

Aviso 1: Esta categoría de impacto trata principalmente con los impactos eventuales de las dosis bajas de las radiaciones ionizantes sobre la salud humana, del ciclo del combustible nuclear. No considera los efectos debido a posibles accidentes nucleares ni la exposición ocupacional debida a la eliminación de residuos radiactivos en las instalaciones subterráneas. El potencial de radiación ionizante del suelo, debida al radón o de algunos materiales de construcción no se mide tampoco con este parámetro.

Aviso 2: Los resultados de este indicador de impacto ambiental deben utilizarse con prudencia, ya que las incertidumbres de los resultados son elevadas y la experiencia con este parámetro es limitada

Uso de recursos

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A 5	B1-B7	C1	C2	C3	C4	D
PERE	MJ	8,11E-01	3,29E-03	9,10E-02	9,05E-01	2,18E-03	1,50E-02	0,00E+00	0,00E+00	4,19E-04	5,47E-04	1,49E-05	-5,25E-02
PERM	MJ	0,00E+00	0,00E+00	5,04E-02	5,04E-02	0,00E+00	-5,04E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	8,11E-01	3,29E-03	1,41E-01	9,52E-01	2,18E-03	-3,56E-02	0,00E+00	0,00E+00	4,19E-04	5,47E-04	1,49E-05	-5,25E-02
PENRE	MJ	8,75E+00	2,17E-01	1,66E-02	8,99E+00	1,68E-01	1,54E-01	0,00E+00	0,00E+00	2,88E-02	3,02E-02	1,71E-03	-2,52E+00
PENRM	MJ	1,21E-04	0,00E+00	3,36E-03	3,49E-03	0,00E+00	-3,49E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	8,75E+00	2,17E-01	2,00E-02	8,99E+00	1,68E-01	1,51E-01	0,00E+00	0,00E+00	2,88E-02	3,02E-02	1,71E-03	-2,52E+00
SM	kg	9,69E-02	7,60E-05	4,57E-03	1,02E-01	4,74E-05	6,66E-03	0,00E+00	0,00E+00	9,78E-06	2,26E-01	3,60E-07	1,50E-01
RSF	MJ	6,36E-05	8,24E-07	7,52E-07	6,49E-05	4,18E-07	1,24E-06	0,00E+00	0,00E+00	1,08E-07	1,05E-07	9,40E-09	-2,77E-06
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m ³	8,07E-03	2,83E-05	1,04E-05	8,11E-03	2,23E-05	1,56E-04	0,00E+00	0,00E+00	3,67E-06	4,53E-06	1,87E-06	-4,36E-04

PERE: Uso de energía primaria renovable excluyendo los recursos de energía primaria renovable utilizada como materia prima; PERT: Uso total de la energía primaria renovable; PENRE: Uso de energía primaria no renovable, excluyendo los recursos de energía primaria no renovable utilizada como materia prima; PENRM: Uso de la energía primaria no renovable utilizada como materia prima; PENRT: Uso total de la energía primaria no renovable; SM: Uso de materiales secundarios; RSF: Uso de combustibles secundarios renovables; FW: Uso neto de recursos de aqua corriente; NR: No relevante

Categorías de residuos

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A 5	B1-B7	C1	C2	C3	C4	D
HWD	kg	2,35E-01	2,57E-04	4,17E-05	2,35E-01	1,80E-04	4,61E-03	0,00E+00	0,00E+00	3,28E-05	4,01E-05	1,82E-06	-2,34E-02
NHWD	kg	1,39E+00	4,66E-03	1,10E-03	1,39E+00	3,14E-03	2,66E-02	0,00E+00	0,00E+00	5,81E-04	7,47E-04	2,57E-05	-4,83E-01
RWD	kg	2,43E-05	1,49E-06	7,52E-08	2,58E-05	1,16E-06	4,57E-07	0,00E+00	0,00E+00	1,98E-07	2,07E-07	1,14E-08	-2,58E-06

HWD: Residuos peligrosos eliminados; NHWD: Residuos no peligrosos eliminados; RWD: Residuos radiactivos eliminados; NR: No relevante

Flujos de salida

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A 5	B1-B7	C1	C2	C3	C4	D
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	5,59E-04	6,96E-07	1,03E-07	5,64E-04	5,47E-07	1,10E-05	0,00E+00	0,00E+00	9,01E-08	9,91E-08	3,43E-09	-2,04E-05
MER	kg	2,20E-06	5,55E-09	2,53E-08	2,23E-06	3,87E-09	4,31E-08	0,00E+00	0,00E+00	7,26E-10	7,99E-10	4,06E-11	-6,41E-08
EE	MJ	3,24E-02	2,47E-04	5,98E-05	3,27E-02	2,01E-04	6,15E-04	0,00E+00	0,00E+00	3,23E-05	4,04E-05	2,89E-06	-1,25E-03

CRU: Componentes para su reutilización; MFR: Materiales para el reciclaje; MER: Materiales para valorización energética; EE: Energía exportada; NR: No relevante

M-100 EXTERIOR (2 mm)

Impactos ambientales.

Los resultados de impacto estimados son relativos y no indican el valor final de las categorías de impacto, ni hacen referencia a valores umbral, márgenes de seguridad o riesgos

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
GWP-total	kg CO2 eq	9,57E+00	1,89E-01	-4,68E-02	9,74E+00	1,37E-01	1,75E-01	0,00E+00	0,00E+00	2,52E-02	2,62E-02	8,14E-04	-3,27E+00
GWP-fossil	kg CO2 eq	9,46E+00	1,89E-01	1,01E-02	9,63E+00	1,37E-01	1,73E-01	0,00E+00	0,00E+00	2,51E-02	2,60E-02	8,08E-04	-3,27E+00
GWP-biogenic	kg CO2 eq	1,45E-01	6,97E-04	-5,70E-02	8,85E-02	4,49E-04	2,64E-03	0,00E+00	0,00E+00	8,69E-05	1,22E-04	2,06E-06	5,59E-03
GWP-luluc	kg CO2 eq	9,96E-03	7,75E-05	9,02E-05	1,01E-02	5,12E-05	1,92E-04	0,00E+00	0,00E+00	1,00E-05	1,28E-05	7,64E-07	-9,24E-04
ODP	kg CFC11 eq	5,87E-07	4,35E-08	1,73E-08	6,47E-07	3,40E-08	9,85E-09	0,00E+00	0,00E+00	5,81E-09	5,98E-09	3,28E-10	-1,27E-07
AP	mol H+ eq	4,43E-02	5,64E-04	6,42E-05	4,49E-02	4,35E-04	8,52E-04	0,00E+00	0,00E+00	7,14E-05	1,53E-04	7,64E-06	-1,18E-02
EP-freshwater	kg PO4 eq	4,99E-03	1,37E-05	3,82E-06	5,01E-03	9,19E-06	9,63E-05	0,00E+00	0,00E+00	1,72E-06	2,19E-06	7,53E-08	-1,30E-03
EP-marine	kg N eq	1,05E-02	1,20E-04	1,87E-05	1,06E-02	9,80E-05	2,03E-04	0,00E+00	0,00E+00	1,46E-05	5,59E-05	2,65E-06	-2,79E-03
EP-terrestrial	mol N eq	1,02E-01	1,31E-03	1,95E-04	1,03E-01	1,06E-03	1,97E-03	0,00E+00	0,00E+00	1,58E-04	6,09E-04	2,90E-05	-2,96E-02
POCP	Kg NMVOC eq	4,12E-02	4,91E-04	8,47E-05	4,17E-02	4,19E-04	7,97E-04	0,00E+00	0,00E+00	6,09E-05	1,73E-04	8,41E-06	-1,64E-02
ADP-minerals& metals ²	kg Sb eq	5,70E-04	7,91E-07	8,19E-08	5,70E-04	3,35E-07	1,13E-05	0,00E+00	0,00E+00	9,08E-08	8,97E-08	1,86E-09	-2,51E-06
ADP-fossil ²	MJ	1,13E+02	2,81E+00	2,15E-01	1,16E+02	2,18E+00	2,00E+00	0,00E+00	0,00E+00	3,73E-01	3,91E-01	2,22E-02	-3,27E+01
WDP ²	m³	5,64E+00	1,35E-02	5,81E-03	5,70E+00	1,01E-02	1,10E-01	0,00E+00	0,00E+00	1,74E-03	2,11E-03	7,03E-05	-2,32E-01

GWP - total: Potencial de calentamiento global; GWP - fossil: Potencial de calentamiento global de los combustibles fósiles; GWP - biogenic: Potencial de calentamiento global biogénico; GWP - luluc: Potencial de calentamiento global del uso y cambio del uso del suelo; ODP: Potencial de agotamiento de la capa de ozono estratosférico; AP: Potencial de acidificación, excedente acumulado; EP-freshwater: Potencial de eutrofización, fracción de nutrientes que alcanzan el compartimento final de agua dulce; EP-marine: Potencial de eutrofización, fracción de nutrientes que alcanzan el compartimento final de agua marina; EP-terrestrial: Potencial de eutrofización, excedente acumulado; POCP: Potencial de formación de ozono troposférico; ADP-minerals&metalsPotencial de agotamiento de recursos abióticos para los recursos no fósiles; APD-fossil: Potencial de agotamiento de recursos abióticos para los recursos fósiles; WDP: Potencial de privación de agua (usuario), consumo de privación ponderada de agua. NR: No relevante

Impactos ambientales adicionales

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A5	B1-B7	C1	C2	СЗ	C4	D
PM	Incidencia de enfremedades	6,70E-07	1,55E-08	1,78E-09	6,86E-07	1,58E-08	1,32E-08	0,00E+00	0,00E+00	2,02E-09	2,80E-09	1,53E-10	-2,18E-07
IRP ¹	kBq U235 eq	8,30E-01	1,49E-02	1,67E-03	8,47E-01	1,12E-02	1,53E-02	0,00E+00	0,00E+00	1,96E-03	2,19E-03	1,01E-04	-5,76E-02
ETP-fw ²	CTUe	5,01E+02	2,37E+00	2,34E-01	5,03E+02	1,82E+00	9,91E+00	0,00E+00	0,00E+00	3,11E-01	3,32E-01	1,45E-02	-1,01E+02
HTP-c ²	CTUh	6,31E-08	8,41E-11	1,02E-11	6,31E-08	4,72E-11	1,24E-09	0,00E+00	0,00E+00	9,57E-12	1,33E-11	3,62E-13	-1,76E-08
HTP-nc ²	CTUh	3,86E-07	2,36E-09	2,14E-10	3,89E-07	1,84E-09	7,64E-09	0,00E+00	0,00E+00	3,05E-10	3,64E-10	9,46E-12	-7,03E-08
SQP ²	-	3,41E+01	1,96E+00	6,36E+00	4,24E+01	2,54E+00	6,64E-01	0,00E+00	0,00E+00	2,65E-01	3,37E-01	4,75E-02	-6,25E+00

PM: Potencial de incidencia de enfermedades debidas a las emisiones de materia particulada (PM); **IRP**: Eficiencia de exposición del potencial humano relativo al U235; **ETP-fw**: Potencial comparativo de unidad tóxica para los ecosistemas - agua dulce; **HTP-c**: Potencial comparativo de unidad tóxica para los ecosistemas - efectos cancerígenos; **HTP-nc**: Potencial comparativo de unidad tóxica para los ecosistemas - efectos no cancerígenos; **SQP**: Índice de potencial de calidad del suelo.; **NR**: No relevante

Aviso 1: Esta categoría de impacto trata principalmente con los impactos eventuales de las dosis bajas de las radiaciones ionizantes sobre la salud humana, del ciclo del combustible nuclear. No considera los efectos debido a posibles accidentes nucleares ni la exposición ocupacional debida a la eliminación de residuos radiactivos en las instalaciones subterráneas. El potencial de radiación ionizante del suelo, debida al radón o de algunos materiales de construcción no se mide tampoco con este parámetro.

Aviso 2: Los resultados de este indicador de impacto ambiental deben utilizarse con prudencia, ya que las incertidumbres de los resultados son elevadas y la experiencia con este parámetro es limitada

Uso de recursos

Parámetro	Unidades	A 1	A2	А3	A1-A3	A 4	A 5	B1-B7	C1	C2	С3	C4	D
PERE	MJ	1,05E+01	4,27E-02	1,18E+00	1,17E+01	2,82E-02	1,94E-01	0,00E+00	0,00E+00	5,42E-03	7,08E-03	1,93E-04	-6,81E-01
PERM	MJ	0,00E+00	0,00E+00	6,53E-01	6,53E-01	0,00E+00	-6,53E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	1,05E+01	4,27E-02	1,83E+00	1,23E+01	2,82E-02	-4,62E-01	0,00E+00	0,00E+00	5,42E-03	7,08E-03	1,93E-04	-6,81E-01
PENRE	MJ	1,13E+02	2,81E+00	2,15E-01	1,16E+02	2,18E+00	2,00E+00	0,00E+00	0,00E+00	3,73E-01	3,91E-01	2,22E-02	-3,26E+01
PENRM	MJ	1,57E-03	0,00E+00	4,36E-02	4,52E-02	0,00E+00	-4,52E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	1,13E+02	2,81E+00	2,59E-01	1,16E+02	2,18E+00	1,96E+00	0,00E+00	0,00E+00	3,73E-01	3,91E-01	2,22E-02	-3,26E+01
SM	kg	1,26E+00	9,85E-04	5,92E-02	1,32E+00	6,14E-04	8,63E-02	0,00E+00	0,00E+00	1,27E-04	2,92E+00	4,67E-06	1,94E+00
RSF	MJ	8,25E-04	1,07E-05	9,74E-06	8,41E-04	5,42E-06	1,61E-05	0,00E+00	0,00E+00	1,39E-06	1,36E-06	1,22E-07	-3,59E-05
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m³	1,05E-01	3,66E-04	1,34E-04	1,05E-01	2,89E-04	2,03E-03	0,00E+00	0,00E+00	4,75E-05	5,87E-05	2,43E-05	-5,64E-03

PERE: Uso de energía primaria renovable excluyendo los recursos de energía primaria renovable utilizada como materia prima; PERT: Uso total de la energía primaria renovable; PENRE: Uso de energía primaria no renovable, excluyendo los recursos de energía primaria no renovable utilizada como materia prima; PENRM: Uso de la energía primaria no renovable utilizada como materia prima; PENRT: Uso total de la energía primaria no renovable; SM: Uso de materiales secundarios; RSF: Uso de combustibles secundarios renovables; FW: Uso neto de recursos de aqua corriente; NR: No relevante

Categorías de residuos

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
HWD	kg	3,04E+00	3,33E-03	5,41E-04	3,05E+00	2,34E-03	5,98E-02	0,00E+00	0,00E+00	4,24E-04	5,19E-04	2,36E-05	-3,04E-01
NHWD	kg	1,80E+01	6,03E-02	1,43E-02	1,80E+01	4,07E-02	3,44E-01	0,00E+00	0,00E+00	7,53E-03	9,68E-03	3,33E-04	-6,25E+00
RWD	kg	3,14E-04	1,93E-05	9,74E-07	3,35E-04	1,51E-05	5,92E-06	0,00E+00	0,00E+00	2,57E-06	2,68E-06	1,48E-07	-3,35E-05

HWD: Residuos peligrosos eliminados; NHWD: Residuos no peligrosos eliminados; RWD: Residuos radiactivos eliminados; NR: No relevante

Flujos de salida

Parámetro	Unidades	A 1	A2	А3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	7,25E-03	9,02E-06	1,34E-06	7,31E-03	7,08E-06	1,42E-04	0,00E+00	0,00E+00	1,17E-06	1,28E-06	4,44E-08	-2,65E-04
MER	kg	2,84E-05	7,19E-08	3,28E-07	2,88E-05	5,01E-08	5,59E-07	0,00E+00	0,00E+00	9,41E-09	1,03E-08	5,26E-10	-8,30E-07
EE	MJ	4,19E-01	3,20E-03	7,75E-04	4,23E-01	2,60E-03	7,97E-03	0,00E+00	0,00E+00	4,19E-04	5,24E-04	3,75E-05	-1,62E-02

CRU: Componentes para su reutilización; MFR: Materiales para el reciclaje; MER: Materiales para valorización energética; EE: Energía exportada; NR: No relevante

Una declaración ambiental verificada

GlobalEPD