

Environmental Product Declaration

EN ISO 14025:2010

EN 15804:2012+A2:2020

AENOR

MULTILAYER TEMPERATURE RESISTANT
POLYETHYLENE (PE-RT) PIPELINE SYSTEMS
AND POLYPHENYLSULPHONE (PPSU)
FITTINGS FOR HOT - COLD WATER

Date of publication: 2022-10-17
Date of modification: 2024-12-20
Valid until: 2027-10-16

Declared validity is subject to registration and publication on www.aenor.com

Registration code: GlobalEPD EN15804-017 rev1

HELIROMA PLÁSTICOS S.A.

The holder of this Declaration is responsible for its contents and for keeping the records and the documentation that supports data and statements included during the validity period

Holder of the Declaration

Heliroma Plásticos S.A.

Zona Industrial EN-1 / IC- km 250,5 Tel. (+35)1 234 523 373 3850-184 Albergaria-a-Velha (Aveiro) Web www.heliroma.pt/

Portugal

AENOR

LCA Study

Abaleo S.L.

D. José Luis Canga Cabañes Tel. (+34) 639 901 043

c/ Poza de la Sal, 8; 3º A e-mail jlcanga@abaleo.es; info@abaleo.es

28031 Madrid Web https://abaleo.es/

Spain

GlobalEPD Programme Operator

AENOR CONFÍA, S.A.U.

 C/ Génova 6
 Tel.
 (+34) 902 102 201

 28009 – Madrid
 e-mail
 aenordap@aenor.com

 Spain
 Web
 www.aenor.com

AENOR is a founding member of ECO Platform, the European Association of Environmental Product Declaration Verification Programmes.

European Standard UNE-EN 158	304:2012+A2:2020 serves as the					
basis for PCRs						
Independent verification of the de	claration and data in accordance					
with EN ISO 14025:2010						
□ Internal						
Verification	Verification body					

AENOR

Product certification body accredited by ENAC with accreditation No. 1/C-PR468

1. General information

1.1. The organisation.

Heliroma Plásticos S.A., hereinafter HELIROMA, is one of the leaders in plastic plumbing systems for hot-cold water and air conditioning systems, exporting its products to more than 30 countries.

The history of HELIROMA begins in 1996 at Arrifana with the production of high and low-density polyethylene pipes for construction and agricultural sector, showing from the beginning its innovative nature. The company's strong position in the market, the powerful development and the increased competition makes HELIROMA expand its product range and move their facilities to a larger building.

The investment in the production of plumbing systems for hot-cold water and heating stimulated the increase of highly qualified human resources, which turned into better product quality, making HELIROMA a reference in Europe, especially in the Iberian Peninsula, for the manufacture of PP-R pipes and fittings.

HELIROMA stands out as one of the few Iberian manufacturers of PP-R pipes with fiberglass compound (PP-R+GF), also known as the third-generation pipe. This reality allowed to win a very significant share of the European market, and to produce these pipes for many of the world-renowned manufacturers.

HELIROMA is also one of the few Iberian manufacturers of PE-RT / AI / PE-RT multilayer pipes and fittings and, in addition, manufactures cross-linked polyethylene (PE-Xa pipes) and a high-temperature polyethylene (PE-RT pipes with and without oxygen barriers).

Continuing with its constant evolution, HELIROMA launched two new products in

2020: PPSU fittings, to complete a multilayer system; and RED FIRE pipe and fittings, a system designed for the installation of sprinklers and hydrants on firefighting facilities.

With the best raw material, HELIROMA produces PP-R 100, PP-RCT 125, PPSU, PE-Xa and PE-RT piping systems, offering to all customers a dimension band width of 12-400 mm.

All HELIROMA's products are manufactured using the most advanced technology either extrusion or injection, in line with the most stringent international standards requirements.

The quality of HELIROMA products and services is certified in several European countries, which have distinguished the excellence of the company with their certifications: CERTIF (Portugal), AENOR (Spain), QB (France), DVGW and SKZ (Germany), ICECON (Romania), FM Approval (USA) y WRAS (UK).

All HELIROMA products passes through a demanding and rigorous analysis and respective production tests, to guarantee the conformity of the product. Likewise, sustainability and ecological responsibility play a key role with all entrepreneurial decisions and in the entire value chain, taking responsibility for creating a sustainable supply chain and maximizing the efficiency of supplier logistics.

1.2. Scope of the Declaration.

This environmental product declaration describes environmental information related to the cradle-to-door life cycle with modules A4, C1-C4 and D, of the following pipes and fittings for use in the construction sector:

 PE-RT/Al/PE-RT multilayer pipes and PPSU fittings.

The specific data of the products' production process included in this LCA study come from the HELIROMA's facilities in Albergaria-a-Velha and correspond to the production data for the years 2019 and 2020, which are considered representative.

The products for which the EPD is drawn up serves their function as piping systems in plastic materials for construction applications.

1.3. Life cycle and compliance.

This EPD has been developed and verified in accordance with UNE-EN ISO 14025:2010 and UNE-EN 15804: 2012+A2:2020.

This EPD includes the life cycle stages listed in table 1-1. This is a cradle-to-gate EPD with modules A4, C y D.

This EPD may not be comparable with those developed in other Programs or under different reference documents.

Likewise, the EPDs may not be comparable if the source of the data is different (e.g. databases), not all relevant information modules are included or they are not based on the same scenarios.

Table 1-1. Limits of the system. Information modules considered

#	A1	Supply of raw materials	Х				
Product	A2	Transport to factory	Х				
п.	A3	Manufacture	Х				
constructio n stage	A4	A4 Transport to construction works					
Cons	A5	Installation/construction	MNA				
	B1	Use	MNA				
	B2	Maintenance	MNA				
ge	В3	Repair	MNA				
Jse stage	B4	B4 Substitution					
Š	B5	Rehabilitation	MNA				
	В6	In-service energy use	MNA				
	В7	In-service water use	MNA				
40	C1	Deconstruction/demolition	MNR				
fLife	C2	Transport	Х				
End of Life	СЗ	Waste treatment	Х				
ш	C4	Disposal	Х				
	D	Potential for re-use, recovery and/or recycling	Х				
	MN	Module included in the LCA. NR = Module not relevant. A = Module not assessed.					

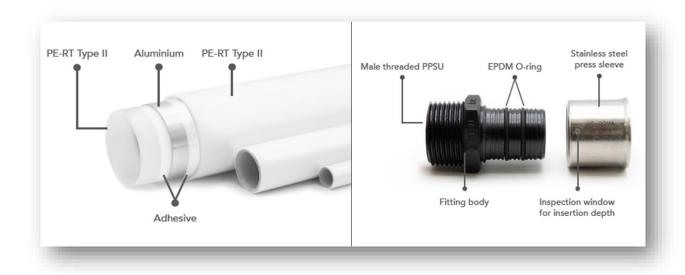
The comparison of construction products must be made on the same function, applying the same functional unit and at the level of the building (or architectural or engineering work), that is, including the behaviour of the product throughout its life cycle, as well as the specifications of section 6.7.2 of the UNE-EN ISO 14025 standard.

1.4. Differences compared to previous versions of this EDP

This version is issued to include the accreditation of ENAC"

2. The product

2.1. Product identification.


HELIROMA's products included in this EPD are PE-RT/Al/PE-RT multilayer pipes and PPSU fittings.

CPC code: 3632.

<u>PE-RT/AI/PE-RT - HELIKLIMA &</u> KLIMAPRESS PPSU system

 HELIKLIMA pipes cross-links the best qualities of both metal and plastic pipes in one single system. The pipe structure is built on a 5 layer structure where the internal and external layers are made of PE-RT type II and the middle layer is made of aluminum, being all layers connected by a special bonding agent. The aluminum layer provides a 100%

- oxygen free barrier and pipe internal wall surface is extremely smooth, avoiding corrosion phenomena, limescale or deposits.
- KLIMAPRESS PPSU is a range of press fitting made of Polyphenylsulfone – PPSU, which offers one of the best performances within sulfone grade. It is the perfect solution for most demanding applications, for example, the ones that require continuous exposure to hot chlorinated water.
- Suitable for: drinking water distribution, heating/colling applications, HVAC systems and compressed air systems even in larger residential industrial and commercial properties.

The following table shows the properties of HELIROMA PE-RT/Al/PE-RT pipes:

PE-RT / AL / PE-RT PROPERTIES									
PARAMETER	VALUE	STANDARD							
FÍSICAS									
Density	941 kg/m³	ISO 1183							
MFI 190°C/5,00 kg	1,9 g/10min	ISO 1133							
Roughness	0,007 mm	ISO 5436							
MECHANICAL									
Tensile Modulus	645 MPa	ISO 527							
Pipe Constant	30								
Burst Pressure	80 bar	80 bar							
Maximum Laying Temperature	50°C								
Minimum Laying Temperature	-10°C								
THERMAL									
Vicat Softening Temperature	125°C	ISO 178							
Thermal Expansion Coefficient 20-100°C	0,026 mm/m.K	VDE 0304							
Thermal Conductivity at 20°C	0,43 W/m.K	DIN 52612							
Fire Classification	B2	DIN 4102							
OTR	0 cm³/cm².day								

Both the materials and the pipes of PE-RT/Al/PE-RT and the PPSU fittings comply with the specifications of the current applicable standard:

- ✓ UNE-EN ISO 21003-2:2009/A1:2011, Multilayer piping systems for hot and cold water installations inside buildings - Part 2: Pipes - Amendment 1 (ISO 21003-2:2008/Amd 1:2011).
- ✓ UNE-EN ISO 22391-2:2010, Plastics piping systems for hot and cold water installations - Polyethylene of raised temperature resistance (PE-RT) - Part 2: Pipes (ISO 22391-2:2009).
- ✓ DIN 16833, Pipes of raisedtemperature-resistance polyethylene (PE-RT) - PE-RT Type I and PE-RT Type II - General quality requirements, testing.

- ✓ RP 01.71, AENOR Mark Specific Rules for Multilayer piping systems for hot and cold water installations inside buildings.
- ✓ HR3.12, Specification for test and inspection: Plastic aluminum multilayer pipes.

2.2. Product composition.

The composition declared by the manufacturer for 1 kilogram of the product is as follows:

Table 2-2-1 PE-RT/AI/PE-RT pipe composition

61%
26%
2%
13%

Table 2-2-2 PPSU fittings composition

	•
Material	% in total weight
PPSU	35 - 36%
Brass	15 - 16%
Stainless steel	46 - 47%
EPDM	1 - 2%

The manufacturer declares that none of the components of the final product is included in the "Candidate list of substances of very high concern for authorization" (SVHC) of the REACH regulation in a percentage higher than 0.1% of the weight of the product.

3. LCA information.

3.1. Life cycle analysis.

The Life Cycle Analysis Report for the EPD of HELIROMA's multilayer temperature resistant polyethylene pipes and their polyphenylsulfone (PPSU) fittings was carried out by the company Abaleo S.L. using the Ecoinvent 3.8 database and the SimaPro 9.4.0.2 software, which was the most updated version available at the time the LCA was carried out.

To carry out the study, data was taken from the HELIROMA plant located in Albergariaa-Velha (Portugal).

The LCA study follows the recommendations and requirements of the international standards ISO 14040:2006, ISO 14044:2006 and the European Standard UNE-EN 15804:2012+A2:2020 as the reference PCR.

3.2. Scope of the study.

The scope of this cradle-to-door LCA with modules A4, C1-C4, and D, is the production of the HELIROMA's PERT/AI/PE-RT multilayer pipes and PPSU fittings for their use in construction sector.

The following phases of the product life cycle were studied:

Product stage.

- A1, production of the raw materials that are part of the final product,
- A2, transportation of raw materials to HELIROMA's facilities.
- A3, production of multilayer pipes and PPSU fittings, including energy

consumption at the Albergaria-a–Velha plant; production of auxiliary materials and their transportation to the factory; packaging production; and transport and management of waste generated.

Installation stage.

 A4, transportation of final products from HELIROMA's facilities to customer.

End of life stage.

- C1, deconstruction.
- C2, transportation of the disassembled materials to the waste treatment or final disposal site.
- C3, treatment of waste for re-use, recovery and/or recycling.
- C4, waste disposal, including physical pre-treatment and management at the disposal site and the associated energy and water use.

Benefits and loads beyond the system.

 D, potential for re-use, recovery and/or recycling, expressed as net benefits and loads.

This LCA does not include:

- All equipment with a service life of more than 3 years.
- The construction of plant buildings, nor other capital assets.
- Business trips; nor staff trip to or from work.
- Research and development activities.

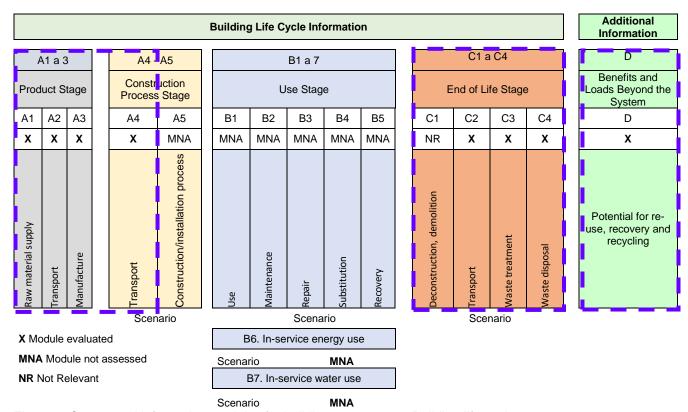


Figure 1. Stages and information modules for building assessment. Building life cycle.

3.3. Declared unit.

The declared unit is one kilogram of product, including the relevant part of the packaging.

3.4. Reference service life (RSL).

Product Reference Service Life (RSL): not specified as it is a cradle-to-gate EPD with modules A4, C1-C4 y D. Assembly processes and/or installation are outside the scope of this EPD.

3.5. Allocation criteria.

In accordance with the criterion of the reference standard:

- Where possible, the product system was extended to avoid allocating the environmental impacts of multi-output unit processes.
- Where allocation could not be avoided, the system's inputs and outputs were allocated by mass. This allocation

criterion was applied for electricity, oil, gas and packaging consumption, and waste.

It was not necessary to apply financial allocation criteria.

3.6. Cutt-off rule.

The gross weight/volume of all materials used in the manufacturing process was included in the LCA. Consequently, the criterion of including at least 99% of the total weight of the products used for the declared functional unit was fulfilled.

3.7. Representativeness, quality and selection of data.

To model the manufacturing process of HELIROMA's PE-RT/Al/PE-RT multilayer pipes and PPSU fittings, production data of the plant located in Albergaria-a-Velha (Portugal), from the years 2019 y 2020, which is a period with representative production data, were used. From this

factory have been obtained data on: material and energy consumption; and waste generation.

Where necessary, the Ecoinvent 3.8 database (November 2021) was used. SimaPro 9.4.0.2 software was used for the inventory data, for modelling the LCA and for calculating the environmental impact categories required by the reference standard, which was the most up-to-date version available at the time of the study.

The following criteria were applied to select the most representative processes:

- Data representing the technological development applied in the manufacturing processes. In case no information was available, a data representing an average technology was chosen.
- Geographic data as close as possible and, where appropriate, regionalized means.
- Data as up to date as possible.

To assess the quality of the primary data from the production of HELIROMA's PERT/Al/PE-RT multilayer pipes and PPSU

fittings, the semi-quantitative data quality assessment criteria, proposed by the European Union in its Guide to the Environmental Footprint of Products and Organizations, were applied. The results obtained were as follows:

- Very good integrity. Score 1.
- Reasonable methodological appropriateness and coherence. Score
 3.
- Very good temporal representativeness. Score 1.
- Good technological representativeness.
 Score 2.
- Very good geographical representativeness. Score 1.
- Low data uncertainty. Score 2.

In accordance with the above data, the Data Quality Rating (DQR) has the following value: 10/6= 1,67, which indicates that the quality of the data is very good.

To better understand the data quality assessment carried out, please note that the score for each of the criteria ranges from 1 to 5 (the lower the score, the higher the quality) and that the following table is applied to obtain the final score:

Overall Data Quality Rating (DQR)	Overall Level of Data Quality
≤ 1,6	Excellent
1,6 a 2,0	Very good
2,0 a 3,0	Good
3 a 4,0	Reasonable
> 4	Insufficient

4. System boundaries, scenarios, and additional technical information.

4.1. Module A1 - Production of raw materials.

This module includes the production processes of raw materials, in which the following is considered:

- Extraction of resources and raw materials production.
- Transport of raw materials to processing/production centers.
- Fuel and energy consumption during the production of raw materials.
- Consumption of other resources (such as water) during the production of raw materials.
- The generation of waste and emissions to air and discharges to water and soil during the production of raw materials.

4.2. Module A2 - Transport of raw materials to the factory.

The transport of all raw materials from the production sites (suppliers) to HELIROMA's facilities was considered, distinguishing in each case the mode of transport used: trucks and ships. The transport distances of the raw materials were provided by HELIROMA, which knows the location of the plant and its suppliers' facilities.

4.3. Module A3 - Manufacture.

This module includes:

- Pipes and fittings manufacture process.
- The production of ancillary materials and their transportation to the plant.
- The manufacture of packaging and its transportation from the suppliers to the plant.
- Transport and management of waste from the manufacturing process.

Transport distances of the waste were provided by HELIROMA, which knows the location of the plant and its waste managers' facilities.

4.4. Module A4 - Transport.

The transport of the products has been considered, from the places of production to the facilities where they are used, distinguishing the mode of transport used: ship or lorry.

Table 4-1 Module A4 parameters - PE-RT/AI/PE-RT pipes

Parameter	Value (per declared unit)
Fuel:	
- Diesel in EURO 5 truck (29,96t payload)	0,04408 l/tkm
- Heavy diesel in transoceanic ship	.,
(43.000 TPM)	0,00296 l/tkm
Average distance:	
- Truck	207,90 km
- Ship	2.003,62 km
Capacity utilization (including empty return)	50 %
Apparent density of transported products	941 kg/m ³
Payload factor	0,98 t

Table 4-2 Module A4 parameters – PPSU fittings

Table 4-2 Module A4 parameters – FF30 littings						
Parameter	Value (per declared unit)					
Fuel:						
- Diesel in EURO 5 truck (29,96t						
payload)	0,04408 l/tkm					
- Heavy diesel in transoceanic ship						
(43.000 TPM)	0,00296 l/tkm					
Average distance:						
- Truck	320,25 km					
- Ship	4.898,38 km					
Capacity utilization (including	EO 0/					
empty return)	50 %					
Apparent density of transported	0.41 kg/m3					
products	941 Kg/III°					
Payload factor	0,98 t					
Average distance: - Truck - Ship Capacity utilization (including empty return) Apparent density of transported products	320,25 km 4.898,38 km 50 % 941 kg/m ³					

4.5. Module C1 – Deconstruction / Demolition.

The LCA considered that the deconstruction module (C1) was not relevant for the quantitative analysis. The consumption of material and energy for the deconstruction and extraction of the pipes and the fittings was not relevant in the context of the building or civil works of which it forms part.

4.6. Module C2: Transport to the waste treatment/recovery plant.

It is considered that the waste deriving from pipes and fittings is transported an average of 50 km to the closest waste management plant in 16-32 tons EURO5 trucks.

4.7. Module C3 - Waste treatment, and Module C4 - Waste disposal.

To determine the percentages of recycling material and material sending to landfill or incineration of the pipes and fittings studied, the criteria of Part C of Annex 2 V2.1 (May 2020) of the Circular Footprint Formula of the Environmental Footprint methodology of the European Union (RECOMMENDATION (EU) 2021/2279 OF THE COMMISSION of December 15, 2021, on the use of the Environmental Footprint methods to measure and communicate the life cycle environmental performance of products and organizations) has been used.

Applying the indicated values to the composition of pipes and accessories, results in the following end-of-life scenarios.

Table 4-3 Module C parameters - PE-RT/Al/PE-RT pipes

Parameter	Value (per declared unit)
Demolition	It is considered that during the deconstruction and dismantling of the pipes and their fittings the consumption of materials and energy is not relevant in the context of the building or civil works.

Collection process, specified by type	kg collected separately kg collected with mixed construction waste.
Recovery system, specified by type	0 kg for re-use 0,213 kg of aluminum for recycling 0,105 kg of PE and 0,005 kg of aluminum for energy recovery.
Disposal, specified by type	0,644 kg of PE and 0,032 kg of aluminum for final disposal in landfill.
Assumptions made to develop scenarios (transport)	Transport of waste in 16-32 tons EURO5 trucks: Average distance of 50 km from the works to the waste management plants.

Table 4-4 Module C parameters – PPSU fittings

Parameter	Value (per declared unit)
Demolition	It is considered that during the deconstruction and dismantling of the pipes and their fittings the consumption of materials and energy is not relevant in the context of the building or civil works.
Collection process, specified by type	kg collected separately kg collected with mixed construction waste.
Recovery system, specified by type	0 kg for re-use 0,145 kg of brass for recycling 0,051 kg of PPSU, 0,001 kg of brass, 0,066 kg of stainless steel and 0,013 kg of EPDM for energy recovery.
Disposal, specified by type	0,312 kg of PPSU, 0,007 kg of brass, 0,403 kg of stainless steel and 0,013 kg of EPDM for final disposal in landfill.
Assumptions made to develop scenarios (transport)	Transport of waste in 16-32 tons EURO5 lorries: Average distance of 50 km from the works to the waste management plants.

4.8. Module D – Benefits beyond the system

The recovery coefficient indicated in the criteria of Part C of Annex 2 V2.1 (May 2020) of the Circular Footprint Formula of the Environment Footprint of the European Union methodology (RECOMMENDATION (EU) 2021/2279 OF THE COMMISSION of December 15, 2021, on the use of the Environmental Footprint methods to measure and communicate the life cycle environmental performance of products

and organizations) has been applied to each waste that is sent for recycling:

- PE-RT/Al/PE-RT pipes expressed for declared unit (1 kg): 100% of the 0,213 kg of aluminum sent to re-use
- PPSU fittings expressed for declared unit (1 kg): 100% of the 0,145 kg of brass sent to re-use.

5. LCA and LCI environmental parameter declaration.

The different environmental parameters obtained from the Life Cycle Assessment (LCA) to produce 1 kilogram of each product studied are presented below.

The estimated impact results are relative and do not indicate the final value of the impact categories, nor do they refer to threshold values, safety margins or risks.

5.1. Environmental impacts – 1 kilogram of PE-RT/AI/PE-RT pipe.

Table 5-1 Parameters describing the environmental impacts defined in the UNE-EN 15804 Standard to produce 1 kilogram of PE-RT/Al/PE-RT pipe.

Parameter	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
GWP-fossil	7,25	1,47E-01	1,59E-02	7,41	4,63E-02	MNA	MNR	6,91E-03	3,16E-01	1,13	-1,28							
GWP-biogenic	1,38E-02	8,49E-06	9,14E-05	1,39E-02	2,65E-06	MNA	MNR	4,04E-07	2,14E-06	2,28E-05	-6,52E-03							
GWP-luluc	1,69E-02	1,42E-06	6,93E-05	1,69E-02	5,18E-07	MNA	MNR	5,58E-08	2,10E-07	2,31E-06	-3,51E-02							
GWP-total	7,28	1,47E-01	1,61E-02	7,44	4,63E-02	MNA	MNR	6,91E-03	3,16E-01	1,13	-1,32							
ODP	2,45E-07	3,40E-08	1,16E-09	2,81E-07	1,05E-08	MNA	MNR	1,64E-09	2,12E-10	2,16E-09	-1,41E-07							
AP	4,18E-02	1,41E-03	6,45E-05	4,33E-02	7,06E-04	MNA	MNR	2,40E-05	3,86E-05	1,90E-04	-7,26E-03							
EP-freshwater	1,98E-04	7,67E-08	6,35E-07	1,98E-04	2,46E-08	MNA	MNR	3,53E-09	1,01E-08	8,55E-08	-6,76E-05							
EP-marine	6,49E-03	3,76E-04	1,43E-05	6,88E-03	1,81E-04	MNA	MNR	7,68E-06	1,91E-05	9,40E-05	-8,52E-04							
EP-terrestrial	7,21E-02	4,17E-03	1,54E-04	7,65E-02	2,01E-03	MNA	MNR	8,45E-05	2,06E-04	9,60E-04	-9,13E-03							
POCP	2,32E-02	1,09E-03	7,59E-05	2,43E-02	5,18E-04	MNA	MNR	2,30E-05	4,89E-05	2,82E-04	-3,63E-03							
ADP-minerals&metals	6,44E-07	5,45E-09	1,83E-09	6,51E-07	1,44E-09	MNA	MNR	3,00E-10	4,61E-10	6,34E-09	4,02E-05							
ADP-fossil ²	106,61	2,04	3,62E-01	109,02	6,33E-01	MNA	MNR	9,77E-02	1,79E-02	1,69E-01	-13,93							
WDP ²	2,41	-1,97E-04	8,59E-03	2,42	-6,16E-05	MNA	MNR	-9,34E-06	4,65E-04	1,14E-03	1,23E-02							

GWP - total (kg CO2 eq.): Global warming potential; GWP - fossil (kg CO2 eq.): Global warming potential of fossil fuels; GWP - biogenic (kg CO2 eq.): Biogenic global warming potential; GWP - luluc (kg CO2 eq.): Global warming potential of soil use and soil-use change; ODP (kg CFC-11 eq): Stratospheric ozone depletion potential; AP (mol H+ eq): Acidification potential, cumulative surplus; EP-freshwater (kg PO4 eq): Eutrophication potential, fraction of nutrients reaching the final freshwater compartment; EP-marine (kg N eq): Eutrophication potential, fraction of nutrients reaching the final marine water compartment; EP-terrestrial (mol N eq): Eutrophication potential, cumulative surplus; POCP (kg NMVOC eq): Tropospheric ozone formation potential; ADP-minerals&metals (kg Sb eq): Abiotic depletion potential for non-fossil resources; APD-fossil (MJ, n.c.v): Abiotic depletion potential for fossil resources; WDP (m3 eq): Water deprivation potential (user), weighted water deprivation consumption.

Table 5-2 Parameters describing the additional environmental impacts defined in the UNE-EN 15804 Standard to produce 1 kilogram of PE-RT/Al/PE-RT pipe.

Parameter	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PM	5,00E-07	9,56E-09	1,04E-09	5,10E-07	2,60E-09	MNA	MNR	5,16E-10	1,28E-10	3,88E-09	-9,67E-08							
IRP ¹	2,20E-01	8,89E-03	7,52E-04	2,30E-01	2,76E-03	MNA	MNR	4,25E-04	2,04E-05	4,93E-04	-1,48E-01							
ETP-fw ²	131,55	7,96E-01	1,33E-01	132,48	2,37E-01	MNA	MNR	3,97E-02	8,15E-02	20,90	-8,18							
HTP-c ²	6,97E-09	1,42E-11	3,38E-12	6,98E-09	5,17E-12	MNA	MNR	5,57E-13	5,48E-12	1,66E-10	-4,21E-09							
HTP-nc ²	1,31E-07	1,21E-09	1,24E-10	1,32E-07	3,30E-10	MNA	MNR	6,48E-11	2,61E-10	2,08E-09	-3,93E-08							
SQP ²	10,48	5,47E-03	2,82E+00	13,31	1,69E-03	MNA	MNR	2,63E-04	2,17E-03	7,83E-02	7,93E-01							

PM (Disease incidence): Particulate matter emissions resulting in potential for diseases; IRP (kBq U235 eq): Efficiency of exposure of human potential related to U235; ETP-fw (CTUe): Comparative ecosystem toxic unit potential - carcinogenic effects; HTP-nc (CTUh): Comparative ecosystem toxic unit potential - non-carcinogenic effects; SQP (Pt): Soil quality potential index.

MNR = Module not relevant. MNA = Module not assessed

Note 1. This impact category deals mainly with the potential impacts of low doses of ionising radiation on human health from the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents and occupational exposure due to the disposal of radioactive waste in underground facilities. The ionising radiation potential of soil, due to radon or some building materials is not measured in this parameter either.

Note 2. The results of this environmental impact indicator should be used carefully as the results are highly uncertain and experience with this parameter is limited.

5.2. Environmental impacts - 1 kilogram of PPSU fittings.

Table 5-3 Parameters describing the environmental impacts defined in the UNE-EN 15804 Standard to produce 1 kilogram of PPSU fittings.

Parameter	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP-fossil	4,80	2,43E-01	2,12E-01	5,26	8,21E-02	MNA	MNR	6,91E-03	5,19E-03	5,49E-01	-7,26E-01							
GWP-biogenic	4,06E-02	1,38E-05	2,52E-03	4,31E-02	4,66E-06	MNA	MNR	4,04E-07	1,17E-06	1,05E-05	-2,94E-03							
GWP-luluc	5,40E-03	2,88E-06	8,76E-04	6,27E-03	9,94E-07	MNA	MNR	5,58E-08	2,99E-08	1,13E-06	-1,62E-03							
GWP-total	4,85	2,43E-01	2,15E-01	5,31	8,21E-02	MNA	MNR	6,91E-03	5,19E-03	5,49E-01	-7,30E-01							
ODP	2,32E-07	5,45E-08	1,17E-08	2,98E-07	1,83E-08	MNA	MNR	1,64E-09	8,42E-11	1,25E-09	-3,91E-08							
AP	7,99E-02	4,30E-03	1,03E-03	8,53E-02	1,54E-03	MNA	MNR	2,40E-05	4,41E-06	1,02E-04	-5,72E-02							
EP-freshwater	4,17E-04	1,30E-07	1,20E-05	4,29E-04	4,41E-08	MNA	MNR	3,53E-09	2,92E-09	4,42E-08	-2,53E-04							
EP-marine	6,15E-03	1,09E-03	2,03E-04	7,45E-03	3,89E-04	MNA	MNR	7,68E-06	2,02E-06	5,15E-05	-2,72E-03							
EP-terrestrial	7,71E-02	1,21E-02	2,13E-03	9,14E-02	4,33E-03	MNA	MNR	8,45E-05	2,18E-05	5,14E-04	-3,94E-02							
POCP	2,35E-02	3,11E-03	7,34E-04	2,73E-02	1,11E-03	MNA	MNR	2,30E-05	5,71E-06	1,51E-04	-1,08E-02							
ADP-minerals&metals	1,58E-03	6,96E-09	3,66E-08	1,58E-03	2,26E-09	MNA	MNR	3,00E-10	5,57E-11	3,12E-09	-1,43E-03							
ADP-fossil ²	68,77	3,30	3,80	75,87	1,11	MNA	MNR	9,77E-02	5,25E-03	9,51E-02	-7,77							
WDP ²	3,22	-3,22E-04	1,44E-01	3,36	-1,09E-04	MNA	MNR	-9,34E-06	3,38E-05	5,54E-04	-9,78E-01							

GWP - total (kg CO2 eq.): Global warming potential; GWP - fossil (kg CO2 eq.): Global warming potential of fossil fuels; GWP - biogenic (kg CO2 eq.): Biogenic global warming potential; GWP - luluc (kg CO2 eq.): Global warming potential of soil use and soil-use change; ODP (kg CFC-11 eq): Stratospheric ozone depletion potential; AP (mol H+ eq): Acidification potential, cumulative surplus; EP-freshwater (kg PO4 eq): Eutrophication potential, fraction of nutrients reaching the final freshwater compartment; EP-marine (kg N eq): Eutrophication potential, fraction of nutrients reaching the final marine water compartment; EP-terrestrial (mol N eq): Eutrophication potential, cumulative surplus; POCP (kg NMVOC eq): Tropospheric ozone formation potential; ADP-minerals&metals (kg Sb eq): Abiotic depletion potential for non-fossil resources; APD-fossil (MJ, n.c.v.): Abiotic depletion potential for fossil resources; WDP (m3 eq): Water deprivation potential (user), weighted water deprivation consumption.

Table 5-4 Parameters describing the additional environmental impacts defined in the UNE-EN 15804 Standard to produce 1 kilogram of PPSU fittings.

Parameter	A 1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
PM	3,72E-07	1,27E-08	1,82E-08	4,02E-07	4,16E-09	MNA	MNR	5,16E-10	1,49E-10	2,15E-09	-1,22E-07							
IRP ¹	2,64E-01	1,44E-02	1,47E-02	2,93E-01	4,84E-03	MNA	MNR	4,25E-04	1,98E-05	2,81E-04	-4,63E-02							
ETP-fw ²	587,44	1,22	3,98	592,64	4,05E-01	MNA	MNR	3,97E-02	3,61E-02	4,61E-01	-473,05							
HTP-c ²	7,77E-08	2,87E-11	7,64E-11	7,78E-08	9,93E-12	MNA	MNR	5,57E-13	1,32E-12	8,01E-11	-1,07E-08							
HTP-nc ²	8,88E-07	1,62E-09	2,34E-09	8,92E-07	5,29E-10	MNA	MNR	6,48E-11	2,62E-11	1,01E-09	-7,73E-07							
SQP ²	28,06	8,78E-03	14,17	42,24	2,95E-03	MNA	MNR	2,63E-04	6,98E-03	5,38E-02	-15,92							

PM (Disease incidence): Particulate matter emissions resulting in potential for diseases; IRP (kBq U235 eq): Efficiency of exposure of human potential related to U235; ETP-fw (CTUe): Comparative ecosystem toxic unit potential - carcinogenic effects; HTP-nc (CTUh): Comparative ecosystem toxic unit potential - non-carcinogenic effects; SQP (Pt): Soil quality potential index.

MNR = Module not relevant. MNA = Module not assessed

Note 1. This impact category deals mainly with the potential impacts of low doses of ionising radiation on human health from the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents and occupational exposure due to the disposal of radioactive waste in underground facilities. The ionising radiation potential of soil, due to radon or some building materials is not measured in this parameter either.

Note 2. The results of this environmental impact indicator should be used carefully as the results are highly uncertain and experience with this parameter is limited.

5.3. Use of resources - 1 kilogram of PE-RT/AI/PE-RT pipe.

Table 5-5 Parameters describing the use of resources to produce of 1 kilogram of PE-RT/Al/PE-RT pipe.

Parameter	A 1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE	8,29	3,06E-03	5,35E-01	8,82	9,27E-04	MNA	MNR	1,50E-04	4,02E-04	3,31E-03	-8,95							
PERM	1,04	4,34E-04	3,54E-01	1,40	1,31E-04	MNA	MNR	2,14E-05	4,69E-05	5,11E-04	5,23E-03							
PERT	9,33	3,49E-03	8,89E-01	10,22	1,06E-03	MNA	MNR	1,71E-04	4,48E-04	3,83E-03	-8,94							
PENRE	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
PENRM	123,76	2,07	0,40	126,23	6,43E-01	MNA	MNR	9,93E-02	1,91E-02	1,78E-01	-18,76							
PENRT	123,76	2,07	0,40	126,23	6,43E-01	MNA	MNR	9,93E-02	1,91E-02	1,78E-01	-18,76							
SM	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
RSF	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
NRSF	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
FW	2,57E-02	1,01E-04	5,73E-05	2,59E-02	3,07E-05	MNA	MNR	4,94E-06	6,59E-05	2,34E-04	-7,53E-03							

PERE (MJ, n.c.v.): Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM (MJ, n.c.v.): Use of renewable primary energy as raw materials; PENRM (MJ, n.c.v.): Use of renewable energy; PENRE (MJ, n.c.v.): Use of non-renewable primary energy, excluding non-renewable primary energy resources used as raw materials; PENRM (MJ, n.c.v.): Use of non-renewable primary energy as raw materials; PENRM (MJ, n.c.v.): Use of non-renewable energy; SM (kg): Use of secondary materials; RSF (MJ, n.c.v.): Use of renewable secondary fuels; NRSF (MJ, n.c.v.): Use of non-renewable secondary fuels; FW (m³): Net use of flowing water resources.

5.4. Use of resources - 1 kilogram of PPSU fittings.

Table 5-6 Parameters describing the use of resources to produce of 1 kilogram of PPSU fittings.

Parameter	A 1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
PERE	12,16	4,79E-03	2,81	14,97	1,60E-03	MNA	MNR	1,50E-04	7,42E-05	9,44E-04	-2,39							
PERM	1,07	6,75E-04	1,66	2,73	2,26E-04	MNA	MNR	2,14E-05	2,07E-05	1,46E-04	-8,54E-02							
PERT	13,22	5,46E-03	4,46	17,69	1,83E-03	MNA	MNR	1,71E-04	9,49E-05	1,09E-03	-2,48							
PENRE	1,49	0,00	0,00	1,49	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
PENRM	79,80	3,36	4,47	87,63	1,13	MNA	MNR	9,93E-02	5,40E-03	9,99E-02	-9,98							
PENRT	81,29	3,36	4,47	89,11	1,13	MNA	MNR	9,93E-02	5,40E-03	9,99E-02	-9,98							
SM	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
RSF	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
NRSF	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
FW	5,50E-02	1,59E-04	6,05E-03	6,12E-02	5,32E-05	MNA	MNR	4,94E-06	8,55E-06	1,13E-04	-3,05E-02							

PERE (MJ, n.c.v.): Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM (MJ, n.c.v.): Use of renewable primary energy as raw materials; PENRM (MJ, n.c.v.): Use of renewable primary energy; PENRE (MJ, n.c.v.): Use of non-renewable primary energy, excluding non-renewable primary energy resources used as raw materials; PENRM (MJ, n.c.v.): Use of non-renewable primary energy as raw materials; PENRT (MJ, n.c.v.): Use of non-renewable energy; SM (kg): Use of secondary materials; RSF (MJ, n.c.v.): Use of renewable secondary fuels; FW (m³): Net use of flowing water resources.

5.5. Waste category.

Table 5-7 Parameters describing the waste categories to produce 1kilogram of PE-RT/Al/PE-RT pipe

Parameter	A 1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
HWD	1,33E-03	4,62E-06	1,95E-07	1,33E-03	1,21E-06	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNR	2,57E-07	1,96E-07	1,21E-06	1,86E-03
NHWD	9,89E-01	1,10E-04	3,89E-04	9,90E-01	3,48E-05	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNR	5,13E-06	9,65E-03	2,28E-01	-3,49E-01
RWD	1,84E-04	1,46E-05	7,31E-07	1,99E-04	4,55E-06	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNR	7,00E-07	2,23E-08	7,35E-07	-1,38E-04

HWD (kg): Hazardous waste disposed; NHWD (kg): Non-hazardous waste disposed; RWD (kg): Radioactive waste disposed.

Table 5-8 Parameters describing the waste categories to produce 1kilogram of PPSU fittings.

Parameter	A 1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
HWD	4,54E-04	5,77E-06	3,23E-06	4,63E-04	1,86E-06	MNA	MNR	2,57E-07	2,28E-08	6,20E-07	-4,04E-04							
NHWD	3,19	1,83E-04	9,19E-03	3,20	6,18E-05	MNA	MNR	5,13E-06	4,45E-02	5,17E-01	-2,41E-01							
RWD	2,08E-04	2,37E-05	1,21E-05	2,44E-04	7,98E-06	MNA	MNR	7,00E-07	3,15E-08	4,41E-07	-3,38E-05							

HWD (kg): Hazardous waste disposed; NHWD (kg): Non-hazardous waste disposed; RWD (kg): Radioactive waste disposed.

5.6. Outputs flows.

Table 5-9 Parameters describing the outputs flows to produce of 1 kilogram of PE-RT/AI/PE-RT pipe

Parameter	A 1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
CRU	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
MFR	0,00	0,00	9,17E-02	9,17E-02	0,00	MNA	MNR	0,00	2,13E-01	0,00	0,00							
MER	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	1,10E-01	0,00	0,00							
EE	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							

CRU (kg): Components for re-use; MFR (kg): Materials for recycling; MER (kg): Materials for energy recovery; EE (MJ): Exported energy

Table 5-10 Parameters describing the outputs flows to produce of 1 kilogram of PPSU fittings.

Parameter	A 1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
CRU	0,00	0,00	2,17E-02	2,17E-02	0,00	MNA	MNR	0,00	0,00	0,00	0,00							
MFR	0,00	0,00	4,59E-03	4,59E-03	0,00	MNA	MNR	0,00	1,45E-01	0,00	0,00							
MER	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	1,20E-01	0,00	0,00							
EE	0,00	0,00	0,00	0,00	0,00	MNA	MNR	0,00	0,00	0,00	0,00							

CRU (kg): Components for re-use; MFR (kg): Materials for recycling; MER (kg): Materials for energy recovery; EE (MJ): Exported energy

6. Additional environmental information.

6.1. Indoor air emissions.

The manufacturer declares that the PE-RT/Al/PE-RT pipes and PPSU fittings do not generate emissions into the indoor air during their service life.

6.2. Discharge to land and water.

The manufacturer declares that PE-RT/Al/PE-RT pipes and PPSU fittings do not generate emissions to soil or water, during their service life.

6.3. Information on Biogenic Carbon Content.

The manufacturer declares that the products studied do not contain materials with biogenic carbon.

Packaging of HELIROMA's PE-RT/Al/PE-RT pipes and PPSU fittings is less than 5% of the total weight of the corresponding final product, therefore, following the indications of the reference standard, the declaration of the biogenic carbon content of the product packaging is omitted.

References

- [1] Standard UNE-EN 15804:2012+A2:2020. Sustainability of construction works Environmental product declarations Core rules for the product category of construction products.
- [2] General Rules of the GlobalEPD Programme, 2nd Revision. AENOR. February 2016.
- [3] Standard UNE-EN ISO 14025:2010. nvironmental labels and declarations Type III environmental declarations Principles and procedures (ISO 14025:2006).
- [4] Standard UNE-EN ISO 14040:2006/A1:2021. Environmental management Life cycle assessment Principles and framework Amendment 1 (ISO 14040:2006/Amd 1:2020).

- [5] Standard UNE-EN ISO 14044:2006/A2:2021. Environmental management Life cycle assessment Requirements and guidelines Amendment 2 (ISO 14044:2006/Amd 2:2020).
- [6] Life Cycle Assessment Report for HELIROMA S.A.'s PP, PE and PPSU pipes and fittings, drafted by Abaleo S.L. October 2022. Version 5.
- [7] Ecoinvent 3.8 database (November 2021).
- [8] Environmental impact assessment methodologies applied through SimaPro 9.4.0.2

Index

1.	General information	3
	The product	
3.	LCA information	8
4.	System boundaries, scenarios, and additional technical information	11
5.	LCA and LCI environmental parameter declaration.	14
6.	Additional environmental information.	22
Dof	forences.	22

GlobalEPD A VERIFIED ENVIRONMENTAL DECLARATION